精英家教网 > 高中数学 > 题目详情
9.下列符号判断正确的是(  )
A.sin4>0B.cos(-3)>0C.tan4>0D.tan(-3)<0

分析 直接根据三角函数值的符号判断即可.

解答 解:对于A:∵π<4<$\frac{3π}{2}$,∴sin4<0,tan4>0,∴A不对,C对;
对于B:cos(-3)=cos3,∵$\frac{π}{2}<3<π$,∴cos(-3)=cos3<0,tan(-3)=-tan3>0,∴B,D不对;
故选C.

点评 本题考查三角函数值的符号,牢记:一全正、二正弦、三正切、四余弦是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.过半径为4的球O表面上一点A作球O的截面,若OA与该截面所成的角是30°,则该截面的面积是12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.k为何值时,直线y=kx+2 和椭圆 2x2+3y2=6相交(  )
A.$\{k\left|{k>\frac{{\sqrt{6}}}{3}}\right.或k<-\frac{{\sqrt{6}}}{3}\}$B.$\{k\left|{-\frac{{\sqrt{6}}}{3}<k<\frac{{\sqrt{6}}}{3}}\right.\}$C.$\{k\left|{k≥\frac{{\sqrt{6}}}{3}}\right.或k≤-\frac{{\sqrt{6}}}{3}\}$D.$\{k\left|{-\frac{{\sqrt{6}}}{3}≤k≤\frac{{\sqrt{6}}}{3}}\right.\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥O-ABC中,AO⊥平面OBC,且OA=OB=OC=2,∠BOC=60°,点E,F分别是AB,AC的中点,H为EF的中点,过EF的动平面与线段OA交于点A1,与线段OB,OC的延长线分别相交于点B1,C1
(Ⅰ)证明:B1C1⊥平面OAH;
(Ⅱ)当|BB1|=2|OA1|-2时,求二面角A-A1E-F的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=x2+$\frac{1}{x}$+1在x=1处的切线方程是y=x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为(  )
A.27πB.48πC.64πD.81π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足约束条件$\left\{{\begin{array}{l}{2x-y+1≥0}\\{x≤1}\\{x-y≤0}\end{array}}\right.$则z=3x-2y的最小值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.扇形AOB的中心角为2θ,θ∈(0,$\frac{π}{2}$),半径为r,在扇形AOB中作内切圆O1与圆O1外切,与OA,OB相切的圆O2,问sinθ为何值时,圆O2的面积最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=xlnx
(1)当x∈(0,e](e是自然常数)时求f(x)的极小值;
(2)求f(x)在点(e,f(e))(e是自然常数)处的切线方程.

查看答案和解析>>

同步练习册答案