精英家教网 > 高中数学 > 题目详情

【题目】已知数列的首项为1,各项均为正数,其前项和为,.

1)求,的值;

2)求证:数列为等差数列;

3)设数列满足,求证:.

【答案】(1),;(2)证明见解析;(3)证明见解析.

【解析】

(1) 即可求出,的值;

(2)两式相减进行整理可得,即可证明为等差数列.

(3)由(2)可知,两式相减整理得,则当时,,通过放缩即可证明;时,.从而可证.

解:(1)令得,,又,解得;

得,,即,从而.

(2)因为 ①;所以

-②得,.因为数列的各项均为正数,所以.

从而.

去分母得,

化简并整理得,,即,

所以.所以数列为等差数列.

(3)由(2)知, ③.当时,,又,所以.

由③知, ④.③-④得,

,依题意,,所以.

时,

,当时,,原不等式也成立.

综上得,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当 时,求曲线yfx)在点(1f1))处的切线方程;(2)求函数 的单调区间和极值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆.以极点为原点,极轴为轴正半轴建立直角坐标系,直线经过点且倾斜角为.

求圆的直角坐标方程和直线的参数方程;

已知直线与圆交与,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等腰梯形中,的中点.将沿折起后如图2,使二面角成直二面角,设的中点,是棱的中

点.

1)求证:

2)求证:平面平面

3)判断能否垂直于平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知两点分别为椭圆的右顶点和上顶点,且,右准线的方程为.

1)求椭圆的标准方程;

2)过点的直线交椭圆于另一点,交于点.若以为直径的圆经过原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

1)证明:△ABC是正三角形;

2)如图,点D在边BC的延长线上,且BC2CDAD,求sinBAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数,给出下列命题,其中真命题是(

A.”是“”的充要条件B.”是“”的充分条件

C.”是“”的必要条件D.是无理数”是“是无理数”的充要条件

查看答案和解析>>

同步练习册答案