精英家教网 > 高中数学 > 题目详情
9.求和:Sn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+$\frac{7}{{2}^{4}}$+…+$\frac{2n-1}{{2}^{n}}$.

分析 利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:Sn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+$\frac{7}{{2}^{4}}$+…+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{2}+$2$(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})$-$\frac{2n-1}{{2}^{n+1}}$=2×$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{1}{2}$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{2n+3}{{2}^{n+1}}$,
∴Sn=3-$\frac{2n+3}{{2}^{n}}$.

点评 本题考查了“错位相减法”与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图.四棱锥P-ABCD中,底面ABCD为等腰梯形,BC∥AD,平面PCD⊥平面ABCD,E.F,G分别是PA,PD,PC的中点,PF⊥PG,AB=BC=CD=$\frac{1}{2}$AD.
(1)求证:EG∥平面ACF;
(2)求证:PE⊥PF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线l1:3x-4y+2=0与直线l2:4x+3y-1=0的位置关系是(  )
A.垂直B.平行C.相交但不垂直D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若数列{an}的前n项和Sn=n2+2n+1.求(1)a8=?(2)求a6+a7+…+a10=?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=1,an•an+1=2n,n∈N,Sn是数列{an}的前n项和,则S10等于(  )
A.63B.93C.126D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{2+lo{g}_{\frac{1}{4}}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$则f(f($\frac{1}{2}$))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.比较大小sin508°<sin144°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,一角槽,已知AD=BC,AB⊥AD,AB=BC,量得AB=80mm,BE=70mm,AE=30mm,求角α的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,$\overrightarrow{a}•\overrightarrow{b}$=-3,则|$\overrightarrow{a}+2\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

同步练习册答案