精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=cosωx-sinωx(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递减,则ω的取值不可能为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 利用两角和的余弦公式化简函数的解析式,再利用余弦函数的单调性求得f(x)的减区间,结合条件可得,-$\frac{π}{4ω}$≤-$\frac{π}{2}$,且 $\frac{3π}{4ω}$≥$\frac{π}{2}$,由此求得ω的范围,从而得出结论.

解答 解:∵函数f(x)=cosωx-sinωx=$\sqrt{2}$cos(ωx+$\frac{π}{4}$)(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递减,
∴2kπ≤ωx+$\frac{π}{4}$<≤2kπ+π,求得-$\frac{π}{4ω}$+$\frac{2kπ}{ω}$≤x≤$\frac{3π}{4ω}$+$\frac{2kπ}{ω}$ (k∈Z).
∵f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递减,∴-$\frac{π}{4ω}$≤-$\frac{π}{2}$,且 $\frac{3π}{4ω}$≥$\frac{π}{2}$,
求得 0<ω≤$\frac{1}{2}$,
故选:D.

点评 本题主要考查两角和的余弦公式,余弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下面是关于公差d>0的等差数列{an}的四个命题:
(1)数列{an}是递增数列;
(2)数列{nan}是递增数列;
(3)数列$\left\{{\frac{a_n}{n}}\right\}$是递减数列;
(4)数列{an+3nd}是递增数列.
其中的真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在正方形ABCD中,AD=4,E为DC上一点,且$\overrightarrow{DE}$=3$\overrightarrow{EC}$,则$\overrightarrow{AB}$•$\overrightarrow{AE}$(  )
A.20B.16C.15D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列判断错误的是(  )
A.命题“若am2≤bm2,则a≤b”是假命题
B.命题“?x∈R,x3-x2-1≤0”的否定是“?x0∈R,${{x}_{0}}^{3}$-${{x}_{0}}^{2}$-1>0”
C.“若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题为真命题
D.命题“p∨q为真命题”是命题“p∧q为真”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a$+$\overrightarrow b$=(2,-8),$\overrightarrow a$-$\overrightarrow b$=(-8,16),则$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为-$\frac{63}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A,B,C为圆O上三点,CO的延长线与线段AB的延长线交于圆O外一点D,且|OD|=2|OC|,若$\overrightarrow{OC}$=p$\overrightarrow{OA}$+q$\overrightarrow{OB}$,则p+q的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={a1,a2,…,an}(其中ai∈R,i=1,2,…,n),a0为常数,定义:ω=$\frac{1}{n}$[sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0)]为集合A相对a0的“正弦方差”,则集合{$\frac{π}{2}$,π}相对a0的“正弦方差”为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知n=${∫}_{1}^{e}\frac{6}{x}$dx,那么${({x^2}-\frac{1}{x})^n}$的展开式中的常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.二项式($\root{3}{{x}^{2}}$+$\frac{2}{\sqrt{{x}^{3}}}$)12展开式的中间一项为29568x-5

查看答案和解析>>

同步练习册答案