| A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
分析 利用两角和的余弦公式化简函数的解析式,再利用余弦函数的单调性求得f(x)的减区间,结合条件可得,-$\frac{π}{4ω}$≤-$\frac{π}{2}$,且 $\frac{3π}{4ω}$≥$\frac{π}{2}$,由此求得ω的范围,从而得出结论.
解答 解:∵函数f(x)=cosωx-sinωx=$\sqrt{2}$cos(ωx+$\frac{π}{4}$)(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递减,
∴2kπ≤ωx+$\frac{π}{4}$<≤2kπ+π,求得-$\frac{π}{4ω}$+$\frac{2kπ}{ω}$≤x≤$\frac{3π}{4ω}$+$\frac{2kπ}{ω}$ (k∈Z).
∵f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递减,∴-$\frac{π}{4ω}$≤-$\frac{π}{2}$,且 $\frac{3π}{4ω}$≥$\frac{π}{2}$,
求得 0<ω≤$\frac{1}{2}$,
故选:D.
点评 本题主要考查两角和的余弦公式,余弦函数的单调性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 16 | C. | 15 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若am2≤bm2,则a≤b”是假命题 | |
| B. | 命题“?x∈R,x3-x2-1≤0”的否定是“?x0∈R,${{x}_{0}}^{3}$-${{x}_{0}}^{2}$-1>0” | |
| C. | “若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题为真命题 | |
| D. | 命题“p∨q为真命题”是命题“p∧q为真”的充分不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com