精英家教网 > 高中数学 > 题目详情
10.已知$α∈(\frac{π}{2},π)$,$cos2α=sin(\frac{π}{4}-α)$,则sin2α=-$\frac{1}{2}$,sinα=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

分析 由题意可得cosα+sinα=$\frac{\sqrt{2}}{2}$,平方求得sin2α的值,可得2α的值,从而求得α的值,进而求得sinα的值.

解答 解:∵$α∈(\frac{π}{2},π)$,∴2α∈(π,2π),
∵$cos2α=sin(\frac{π}{4}-α)$,即cos2α=(cos2α-sin2α)=$\frac{\sqrt{2}}{2}$(cosα-sinα)<0,
∴2α∈(π,$\frac{3π}{2}$),
∴cosα+sinα=$\frac{\sqrt{2}}{2}$,或 cosα-sinα=0(舍去).
∴只有cosα+sinα=$\frac{\sqrt{2}}{2}$,∴1+sin2α=$\frac{1}{2}$,sin2α=-$\frac{1}{2}$.
此时,2α=$\frac{11π}{6}$(舍去)或$\frac{7π}{6}$;
∵α=$\frac{7π}{12}$,
∴sinα=sin($\frac{7π}{12}$)=sin($\frac{π}{3}$+$\frac{π}{4}$)=sin$\frac{π}{3}$cos$\frac{π}{4}$+cos$\frac{π}{3}$sin$\frac{π}{4}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
故答案为:-$\frac{1}{2}$;$\frac{\sqrt{6}+\sqrt{2}}{4}$.

点评 本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x|2x+a|,a∈R是奇函数,则a=0,f(-2)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=3sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{2}$个单位后,得到的图象对应函数为g(x),则g($\frac{π}{6}$=)(  )
A.0B.-3C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设p、q是两个命题,若¬(p∨q)是真命题,那么(  )
A.p是真命题且q是假命题B.p是真命题且q是真命题
C.p是假命题且q是真命题D.p是假命题且q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=2,点F是PB的中点,点E是BC边上的任意一点.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当E是BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:AF⊥PE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知四边形ABCD的对角线相交于一点,$\overrightarrow{AC}$=(1,$\sqrt{3}$),$\overrightarrow{BD}$=(-$\sqrt{3}$,1),则$\overrightarrow{AB}$•$\overrightarrow{CD}$的取值范围是(  )
A.(0,2)B.(0,4]C.[-2,0)D.[-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=3sinx•ln(1+x)的部分图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,b=$\sqrt{3}$,B=$\frac{π}{3}$.
(Ⅰ)如果a=2c,求c的值;
(Ⅱ)设f(A)表示△ABC的周长,求f(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是两个不共线的向量,已知向量$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+sinα$\overrightarrow{{e}_{2}}$(-$\frac{π}{2}$<α<$\frac{π}{2}$),$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$-$\frac{5}{4}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三点共线,则函数f(x)=2cos(x+α)在[0,π)上的值域为(  )
A.[-1,$\frac{1}{2}$]B.[-2,$\sqrt{3}$]C.(-2,1]D.(-1,$\sqrt{3}$]

查看答案和解析>>

同步练习册答案