精英家教网 > 高中数学 > 题目详情
6.计算下列各式:
(1)log24+log21-lg100+log33;    
(2)${4^{-1}}×{(2-\sqrt{2})^0}+{9^{\frac{1}{2}}}×{2^{-2}}+{(\frac{1}{2})^{-\frac{1}{2}}}-\sqrt{2}$.

分析 (1)直接利用对数运算法则求解即可.
(2)利用有理指数幂的运算法则化简求解即可.

解答 解:(1)log24+log21-lg100+log33
=2+0-2+1
=1;    
(2)${4^{-1}}×{(2-\sqrt{2})^0}+{9^{\frac{1}{2}}}×{2^{-2}}+{(\frac{1}{2})^{-\frac{1}{2}}}-\sqrt{2}$
=$\frac{1}{4}$$+\frac{3}{4}$$+\sqrt{2}-\sqrt{2}$
=1.

点评 本题考查对数运算法则以及有理指数幂的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知圆C过点 A(1,4),B(3,2),且圆心在直线x+y-3=0上.
(I)求圆C的方程;
(II)若点 P(x,y)在圆C上,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点M(4,0),点P在曲线y2=8x上运动,点Q在曲线(x-2)2+y2=1上运动,则$\frac{|PM{|}^{2}}{|PQ|}$取到最小值时P的横坐标为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(-2,0)、B(3,0),动点P(x,y)满足$\overrightarrow{PA}•\overrightarrow{PB}={x^2}$,则点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知m∈R,命题P:对任意x∈[-1,1],不等式m2-3m-x+1≤0恒成立;命题q:存在x∈[-1,1],使得m-ax≤0成立.
(Ⅰ)当a=1,p且q为假,p或q为真时,求m的取值范围;
(Ⅱ)若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.我们把离心率e=$\frac{\sqrt{5}-1}{2}$的椭圆叫做“优美椭圆”,设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1为优美椭圆,F、A分别是它的右焦点和左顶点,B是它短轴的一个端点,则∠ABF等于(  )
A.60°B.75°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx-$\frac{1}{2}$(x∈R,ω>0),若f(x)的图象中相邻的两条对称轴之间的距离不小于$\frac{π}{2}$,则ω的取值范围是(  )
A.(0,1)B.(0,1]C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系中,若点(2,t)在直线x-2y+4=0的左上方区域且包括边界,则t的取值范围是(  )
A.t<3B.t>3C.t≥3D.t≤3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=ax3+bx-3其中a,b为常数,若f(-2)=2,则f(2)的值等于(  )
A.-8B.-6C.-4D.-2

查看答案和解析>>

同步练习册答案