精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx-$\frac{1}{2}$(x∈R,ω>0),若f(x)的图象中相邻的两条对称轴之间的距离不小于$\frac{π}{2}$,则ω的取值范围是(  )
A.(0,1)B.(0,1]C.(0,2)D.(0,2]

分析 运用二倍角公式,降幂公式和辅助角公式化简函数式,再求出函数的周期,根据周期的范围即可求得ω的范围.

解答 解:f(x)=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$(1+cos2ωx)-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$cos2ωx-1
=sin(2ωx-$\frac{π}{6}$)-1,
∵ω>0,∴函数f(x)的最小正周期T=$\frac{2π}{2ω}$=$\frac{π}{ω}$,
因为,f(x)的图象中相邻的两条对称轴之间的距离不小于$\frac{π}{2}$,
所以,$\frac{1}{2}$T≥$\frac{π}{2}$,
即$\frac{1}{2}$×$\frac{π}{ω}$≥$\frac{π}{2}$,解得,0<ω≤1,
故答案为:B.

点评 本题主要考查了三角函数的恒等变换,涉及二倍角公式,降幂公式和辅助角公式的运用,以及三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,已知a1=3,当n≥2时,$\frac{1}{a_n}-\frac{1}{{{a_{n-1}}}}=\frac{1}{5},{a_{16}}$=(  )
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系中,已知△ABC的顶点A(-5,0),C(5,0),顶点B在双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1左支上,则$\frac{sinA-sinC}{sinB}$=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算下列各式:
(1)log24+log21-lg100+log33;    
(2)${4^{-1}}×{(2-\sqrt{2})^0}+{9^{\frac{1}{2}}}×{2^{-2}}+{(\frac{1}{2})^{-\frac{1}{2}}}-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线y=mx+2过双曲线$\frac{{x}^{2}}{2}$-y2=1的顶点,则m等于(  )
A.0B.±$\sqrt{2}$C.±$\frac{\sqrt{2}}{2}$D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知x+x-1=4,求x2+x-2-4的值;
(2)已知log535=a,求log71.4的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的一条棱长为$\sqrt{7}$,在该几何体的正视图中,这条棱的投影是长为$\sqrt{6}$的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a2+b2=(  )
A.6B.7C.8D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等比数列{an}满足a1+a4=$\frac{9}{8}$,a1a4=$\frac{1}{8}$,且公比q<1
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项的和,求S1+S2+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=x5+ax3+bx+1且f(-2)=10,那么f(2)=-8.

查看答案和解析>>

同步练习册答案