精英家教网 > 高中数学 > 题目详情
18.在极坐标系中,已知曲线C:ρ2+2ρsinθ-3=0(ρ∈R),直线l是过直角坐标系下定点(2,1)且与直线θ=$\frac{π}{4}$平行的直线,A、B分别为曲线C和直线l上的动点.
(1)将曲线C和直线l分别化为直角坐标系下的方程;
(2)求|AB|的最小值.

分析 (1)利用ρ2=x2+y2,y=ρsinθ,把曲线C的方程化为直角坐标方程,利用相互平行的直线斜率之间的关系、点斜式即可得出直线l的方程;
(2)求出圆心C(0,-1)在直线l上,可得|AB|的最小值为0.

解答 解:(1)曲线C:ρ2+2ρsinθ-3=0(ρ∈R),
∴x2+y2+2y-3=0,化为x2+(y+1)2=4;
l为过定点(2,1)且与直线θ=$\frac{π}{4}$平行的直线,
∴直线l的方程为:y-1=x-2,化为x-y-1=0.
(2)圆心C(0,-1)在直线l上,∴|AB|的最小值=0.

点评 本题考查了把极坐标方程化为直角坐标方程、相互平行的直线斜率之间的关系、点斜式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.复数$\frac{{i}^{2}}{2i-1}$(i为虚数单位)的虚部是(  )
A.$\frac{1}{5}$iB.$\frac{2}{5}$C.-$\frac{1}{5}$iD.-$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.盒子中有6只灯泡,其中4只正品.2只次品,有放回地从中任取两次,每次只取一只,则事件:取到的两只中正品、次品各一只的概率(  )
A.$\frac{2}{3}$B.$\frac{4}{9}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=-$\frac{2}{x}$的值域为{y∈R|y≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知程序如图:若输入的x值为82,则通过以上程序运行后,输出得的结果是18.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且满足Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=2,f(bn+1)=$\frac{1}{f(-3-{b}_{n})}$,(n∈N*),若cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow a$与$\overrightarrow b$的夹角为θ,若$\overrightarrow a$=(1,2),2$\overrightarrow b$-$\overrightarrow a$=(-1,2),则cosθ=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}1,x≥0\\-1,x<0\end{array}$,g(x)=$\frac{x^2}{e^x}$f(x-1),则函数g(x)的递增区间是(-∞,0],[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设复数z=$\frac{2+i}{(1+i)^{2}}$(i为虚数单位),则|z|=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案