精英家教网 > 高中数学 > 题目详情
8.已知cos($\frac{π}{2}$-θ)=$\frac{4}{5}$且tanθ>0,则cos(π+θ)=-$\frac{3}{5}$.

分析 由已知利用诱导公式可求sinθ的值,进而可得θ为第1象限角,利用同角三角函数基本关系式可求cosθ的值,利用诱导公式化简所求即可计算求值.

解答 解:∵cos($\frac{π}{2}$-θ)=sinθ=$\frac{4}{5}$,可得θ为第1或2象限角,
又∵tanθ>0,可得θ为第1或3象限角,
∴综上,可得θ为第1象限角,cosθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{3}{5}$,
∴cos(π+θ)=-cosθ=-$\frac{3}{5}$.
故答案为:-$\frac{3}{5}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.解下列不等式:
①|2x+1|<|x-2|;
②|$\frac{{x}^{2}-3x+2}{1+x}$|>$\frac{{x}^{2}-3x+2}{1+x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知各项均为正数的数列{an},其前n项和为Sn,且Sn,an,$\frac{1}{2}$成等差数列,则数列{an}的通项公式为(  )
A.2n-3B.2n-2C.2n-1D.2n-2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=1,且an+1=an+$\frac{{a}_{n}+{n}^{2}+n}{n}$.
(1)证明:数列{$\frac{{a}_{n}}{n}$}为等差数列;
(2)若数列{bn}满足anbn=2nn2-n3,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{\frac{2{x}^{2}}{x+1},x∈(\frac{1}{2},1]}\\{-\frac{1}{3}x+\frac{1}{6},x∈[0,\frac{1}{2}]}\end{array}\right.$,g(x)=$\frac{1}{2}$ax2-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是$\frac{1}{2}$≤a≤$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A(1,0),B(0,1),C(2sin(θ-$\frac{π}{4}$),cos($θ-\frac{π}{4}$)),且|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|.
(1)求tan($θ-\frac{π}{4}$)的值;
(2)若θ-$\frac{π}{4}$∈(0,$\frac{π}{2}$),求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=asin(πx+θ)+bcos(πx+θ)+x,且f(2006)=2005,则f(2007)的值为(  )
A.2005B.2006C.2007D.2008

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC中,a=4,b=5,c=6,则△ABC中,acosB+bcosA=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

同步练习册答案