| A. | 2n-3 | B. | 2n-2 | C. | 2n-1 | D. | 2n-2+1 |
分析 先根据Sn,an,$\frac{1}{2}$成等差数列,得到2an=Sn+$\frac{1}{2}$,继而得到2an-1=Sn-1+$\frac{1}{2}$,两式相减,整理得:an=2an-1(n≥2),继而得到数列{an}是$\frac{1}{2}$为首项,2为公比的等比数列,问题得以解决.
解答 解:由题意知2an=Sn+$\frac{1}{2}$,
2an-1=Sn-1+$\frac{1}{2}$,
两式相减得an=2an-2an-1(n≥2),整理得:an=2an-1(n≥2)
当n=1是,2a1=S1+$\frac{1}{2}$,即a1=$\frac{1}{2}$
∴数列{an}是$\frac{1}{2}$为首项,2为公比的等比数列,
∴an=$\frac{1}{2}$•2n-1=2n-2,
当n=1时,成立,
故选:B
点评 本题考查了等差数列的性质和数列的递推公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com