分析 运用拆项组合,得出$\frac{{x}^{3}}{3}$$+\frac{{x}^{3}}{3}$$+\frac{{x}^{3}}{3}$+y3+xy+xy+xy=1,运用基本不等式求解即可.
解答 解:∵x、y∈[0,+∞)且满足x3+y3+3xy=1,
∴$\frac{{x}^{3}}{3}$$+\frac{{x}^{3}}{3}$$+\frac{{x}^{3}}{3}$+y3+xy+xy+xy=1,
∵$\frac{{x}^{3}}{3}$$+\frac{{x}^{3}}{3}$$+\frac{{x}^{3}}{3}$+y3+xy+xy+xy≥7$\root{7}{\frac{{x}^{12}{y}^{6}}{27}}$,(y2=x=$\sqrt{3}$等号成立)
∴1≥7$\root{7}{\frac{{x}^{12}{y}^{6}}{27}}$,
即x2y≤$\root{6}{\frac{27}{{2}^{7}}}$,(y2=x=$\sqrt{3}$等号成立)
故答案为:$\root{6}{\frac{27}{{2}^{7}}}$
点评 本题考查了基本不等时代运用,关键构造得出运用的条件,拆项组合,判断求解.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\root{3}{x^3}$与g(x)=$\root{4}{x^4}$ | |
| B. | f(x)=$\sqrt{{x^2}-1}$与g(x)=$\sqrt{x-1}•\sqrt{x+1}$ | |
| C. | f(x)=2x,x∈{0,1,2,3}与g(x)=$\frac{x^3}{6}+\frac{5}{6}x+1,x∈\left\{{0,1,2,3}\right\}$ | |
| D. | f(x)=|x|与g(x)=$\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,3) | B. | (-2,4) | C. | (-1,4) | D. | (-1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n-3 | B. | 2n-2 | C. | 2n-1 | D. | 2n-2+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com