精英家教网 > 高中数学 > 题目详情
12.已知集合A={1,0,-e,-2i2}(i是虚数单位),B={x|x2-1>0},则A∩B={e,2}.

分析 利用复数性质确定出A,求出B中不等式的解集确定出B,找出A与B的交集即可.

解答 解:由B中不等式变形得:(x+1)(x-1)>0,
解得:x<-1或x>1,即B=(-∞,-1)∪(1,+∞),
∵A={1,0,-e,-2i2}={1,0,e,2},
∴A∩B={e,2},
故答案为:{e,2}

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知点M(1,4)到直线1:mx十y-1=0的距离等于1,则实数m等于(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=3sinωxcosx+$\sqrt{3}$cos2ωx(ω>0)的最小正周期为$\frac{π}{2}$,将函数f(x)的图象向左平移φ (φ>0)个单位后,得到的函数图形的一条对称轴为x=$\frac{π}{8}$,则φ的值不可能为(  )
A.$\frac{5π}{24}$B.$\frac{13π}{24}$C.$\frac{17π}{24}$D.$\frac{23π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}中,前n项和Sn=3n+1,
(1)求a1
(2)求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的奇函数f(x)满足:对任意的x1,x2∈[0,+∞)( x1≠x2),有(x2-x1)(f(x2)-f(x1))>0,则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)计算${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+{log_2}3×{log_3}$4
(2)已知tanα=$\sqrt{3},π<α<\frac{3}{2}$π,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{xn}满足x1=0,xn+1=-xn2+xn+c(n∈N*
(1)证明:{xn}是递减数列的充分必要条件是c<0;
(2)若数列{xn}是递增数列,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2+bx-lnx,a,b∈R.
(1)若a<0且b=2-a,试讨论f(x)的单调性;
(2)若b=-8,总存在x∈(0,$\frac{1}{e}$]使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知M是△ABC内的一点(不含边界),且$\overrightarrow{AB}•\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°若△MBC、△MAB、△MAC的面积分别是x,y,z,则$\frac{1}{x+y}+\frac{4}{z}$的最小值为9.

查看答案和解析>>

同步练习册答案