精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=3sinωxcosx+$\sqrt{3}$cos2ωx(ω>0)的最小正周期为$\frac{π}{2}$,将函数f(x)的图象向左平移φ (φ>0)个单位后,得到的函数图形的一条对称轴为x=$\frac{π}{8}$,则φ的值不可能为(  )
A.$\frac{5π}{24}$B.$\frac{13π}{24}$C.$\frac{17π}{24}$D.$\frac{23π}{24}$

分析 由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性、图象的对称性,y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:已知函数f(x)=3sinωxcosx+$\sqrt{3}$cos2ωx=$\frac{3}{2}$sin2ωx+$\sqrt{3}$•$\frac{1+cos2ωx}{2}$
=$\sqrt{3}$sin(2ωx+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$ 的最小正周期为$\frac{π}{2}$,
故$\frac{2π}{2ω}$=$\frac{π}{2}$,∴ω=2,f(x)=$\sqrt{3}$sin(4x+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$.
将函数f(x)的图象向左平移φ个单位后得到g(x)=$\sqrt{3}$sin[4(x+φ)+$\frac{π}{6}$]+$\frac{\sqrt{3}}{2}$ 
=$\sqrt{3}$sin(4x+4φ+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$ 的图象.
因为函数g(x)的一条对称轴为x=$\frac{π}{8}$,故4•$\frac{π}{8}$+4φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,
解得 φ=$\frac{kπ}{4}$-$\frac{π}{24}$,k∈Z,
故选:B.

点评 本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(x)=x2-a|x-1|-1,a∈R.
(1)当a=0时,判断函数f(x)的奇偶性,并用定义证明;
(2)若f(x)≥0对x∈[1,+∞)恒成立,求a的取值范围;
(3)写出f(x)在[-2,2]上的最大值g(a).(不需要解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知向量$\overrightarrow{a}$=(2sinB,1),$\overrightarrow{b}$=(cosA,sin(A+C)),若$\overrightarrow{a}$⊥$\overrightarrow{b}$.
(I)求角A;
(Ⅱ)若BC=$\sqrt{21}$,△ABC的面积是$\sqrt{3}$,若AB<AC,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设i是虚数单位,若复数z满足z(1-i)=i,则复数z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:($\frac{x-4}{3}$)2≤4,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,则$f({\frac{1}{2015}})+f({\frac{2}{2015}})+f({\frac{3}{2015}})+…+f({\frac{2014}{2015}})$=(  )
A.1007B.1008C.2014D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$\overrightarrow{a}$=(2+λ,1),$\overrightarrow{b}$=(3,λ),若<$\overrightarrow{a}$,$\overrightarrow{b}$>为钝角,则实数λ的取值范围是$λ<-\frac{3}{2}$且λ≠-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合A={1,0,-e,-2i2}(i是虚数单位),B={x|x2-1>0},则A∩B={e,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+2y-3≥0}\\{2x+y-3≤0}\end{array}\right.$,$\overrightarrow{a}$=(y,m+x),$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则m的最小值为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案