分析 由向量和三角形的知识可得正数x,y,z满足x+y+z=1,整体代入可得$\frac{1}{x+y}+\frac{4}{z}$=($\frac{1}{x+y}+\frac{4}{z}$)(x+y+z)=5+$\frac{z}{x+y}$+$\frac{4(x+y)}{z}$,由基本不等式可得.
解答 解:由题意可得$\overrightarrow{AB}•\overrightarrow{AC}$=bccos30°=2$\sqrt{3}$,
解得bc=4,故△ABC的面积S=$\frac{1}{2}$bcsin30°=1,
∴正数x,y,z满足x+y+z=1,
∴$\frac{1}{x+y}+\frac{4}{z}$=($\frac{1}{x+y}+\frac{4}{z}$)(x+y+z)
=5+$\frac{z}{x+y}$+$\frac{4(x+y)}{z}$≥5+2$\sqrt{\frac{z}{x+y}•\frac{4(x+y)}{z}}$=9
当且仅当$\frac{z}{x+y}$=$\frac{4(x+y)}{z}$即z=2(x+y)时取等号,
结合x+y+z=1可得x+y=$\frac{1}{3}$且z=$\frac{2}{3}$.
故选答案为:9.
点评 本题考查基本不等式求最值,涉及三角形和向量的知识,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,-2) | C. | (-2,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②④ | B. | ②④⑤ | C. | ②③④ | D. | ③④⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | (2,+∞) | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2kπ),k∈Z | B. | (2kπ-π,2kπ),k∈Z | C. | (2kπ-2π,2kπ),k∈Z | D. | (2kπ-$\frac{4π}{3}$,2kπ),k∈Z |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com