精英家教网 > 高中数学 > 题目详情
若方程
x2
a2
+
y2
a+6
=1
表示焦点在x轴上的椭圆,则实数a的取值范围是______.
∵方程
x2
a2
+
y2
a+6
=1
表示焦点在x轴上的椭圆,
∴a2>a+6>0,
∴a>2或-6<a<-3.
故答案为:a>2或-6<a<-3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,离心率等于
2
3
,右焦点F是圆(x-1)2+y2=1的圆心,过椭圆上位于y轴左侧的一动点P作该圆的两条切线分别交y轴于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求线段MN的长的最大值,并求出此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,-1),则E的方程为(  )
A.
x2
45
+
y2
36
=1
B.
x2
36
+
y2
27
=1
C.
x2
27
+
y2
18
=1
D.
x2
18
+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.
(1)求椭圆C的方程;
(2)设M为椭圆上任意一点,以M为圆心,MF1为半径作圆M,当圆M与直线l:x=
a2
c
有公共点时,求△MF1F2面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,\直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程
x2
m-1
+
y2
3-m
=1
表示焦点在y轴上的椭圆,则实数m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2手11•浙江)设F1,F2分别为椭圆
x2
3
+y2=1的焦点,点A,B在椭圆上,若
F1A
=5
F2B
;则点A的坐标是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC为正三角形,点A,B为椭圆的焦点,点C为椭圆一顶点,则该三角形的面积与椭圆的四个顶点连成的菱形的面积之比为(  )
A.
1
2
B.
1
4
C.
3
2
D.
3
3

查看答案和解析>>

同步练习册答案