精英家教网 > 高中数学 > 题目详情
15.若对任意非负实数x都有(x-m)e-x-$\sqrt{x}$<0,则实数m的取值范围是(0,+∞).

分析 由题意可得m>x-ex•$\sqrt{x}$,令f(x)=x-ex•$\sqrt{x}$,求出函数f(x)的导数,判断单调性,即可得到最大值,进而得到m的范围.

解答 解:对任意非负实数x都有(x-m)e-x-$\sqrt{x}$<0,
即为x-m<ex•$\sqrt{x}$,
即有m>x-ex•$\sqrt{x}$,
令f(x)=x-ex•$\sqrt{x}$,
f′(x)=1-ex•($\sqrt{x}$+$\frac{1}{2\sqrt{x}}$)
由x>0可得ex>1,$\sqrt{x}$+$\frac{1}{2\sqrt{x}}$≥2$\sqrt{\frac{1}{2}}$=$\sqrt{2}$,
则ex•($\sqrt{x}$+$\frac{1}{2\sqrt{x}}$)>1,
即f′(x)<0,即有f(x)在[0,+∞)递减,
则f(x)的最大值为f(0)=0,
则有m>0,
故答案为:(0,+∞).

点评 本题考查不等式恒成立问题转化为求函数的最值问题,运用参数分离和运用导数判断单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥A-DCBE中,AC⊥BC,底面DCBE为平行四边形,DC⊥平面ABC.
(Ⅰ)求证:DE⊥平面ACD;
(Ⅱ)设平面ADE∩平面ABC=直线l,求证:BC∥l;
(Ⅲ)若∠ABC=30°,AB=2,EB=$\sqrt{3}$,求三棱锥B-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在△ABC中,∠A=60°,AB=2AC=8,过C作△ABC外接圆的切线CD,BD⊥CD于D,BD与外接圆交于点E,则DE=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.到广州的高速铁路从武汉发车后,经过一段时间加速后以匀速360km/h行驶,最后减速停在长沙南站,已知减速时列车的加速度b与加速时间t的函数关系式为b(t)=-4000×3600t3(km:千米;h:小时),则列车减速所用的时间为10小时.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项都为正数的数列{an}的前n项和为Sn,且4Sn=(an+1)2
(1)求证:数列{an}为等差数列;
(2)已知数列{bn}满足:b1=2,bn+1=bn+$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的通项公式;
(3)设cn=$\frac{n}{({a}_{n}{a}_{n+1})^{2}}$,记数列{cn}的前n项和为Tn,如果对于任意的n∈N*,不等式λTn<$\frac{n+1}{2n+1}$[n+18(-1)n+1]都成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:a1=1,$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{{a}_{n}}^{2}}+4}$,n∈N*,其前n项和为Sn
(1)求证:数列{$\frac{1}{{{a}_{n}}^{2}}$}是等差数列;
(2)设数列{bn}的前n项和为Tn,且满足:$\frac{{T}_{n+1}}{{{a}_{n}}^{2}}$=$\frac{{T}_{n}}{{{a}_{n+1}}^{2}}$+16n2-8n-3.试确定b1的值,使得数列{bn}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.写出函数y=2-sinx取最大值、最小值的x的集合,并求出这个函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(Ⅰ)求证:BM∥平面ADEF;
(Ⅱ) 求证:平面EDB⊥平面BCE
(Ⅲ)求三棱锥M-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面ABCD是平行四边形,M、N分别是AB、PC的中点,且PA⊥AB,PA⊥PC.证明:平面PAD⊥平面PDC.

查看答案和解析>>

同步练习册答案