精英家教网 > 高中数学 > 题目详情
10.宁夏2011年起每年举办一届旅游节,到2016年已举办了六届,旅游部门统计在每届旅游节期间,吸引了不少外地游客到宁夏,这将极大地推进宁夏的旅游业的发展,现将前五届旅游节期间外地游客到宁夏的人数统计如下表:
年份11年12年13年14年15年
旅游节届编号x12345
外地游客人数y(单位:十万)0.60.80.91.21.5
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$
(2)利用(1)中的线性回归方程,预测17年第7届旅游节期间外地游客到宁夏的人数.

分析 (1)先求平均数,再将数据依次代入相关公式,求出$\widehatb=0.22$以及$\widehata=\overline y-\widehatb\overline x$=1-0.22×3=0.34;
(2)本题实际为利用线性回归方程进行估值:当x=7时,$\widehaty=0.22×7+0.34=1.88$,即得结果.

解答 解:(1)由所给数据计算得:$\overline x=\frac{1}{5}(1+2+3+4+5)=3$,$\overline y=\frac{1}{5}(0.6+0.8+0.9+1.2+1.5)=1$,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}=}4+1+0+1+4=10$,$\sum_{i=1}^5{({x_i}-\overline x)({y_i}-\overline y)=(-2)×}(-0.4)+(-1)×(-0.2)+0+1×0.2+2×0.5=2.2$,$\widehatb=\frac{2.2}{10}=0.22$,$\widehata=\overline y-\widehatb\overline x$=1-0.22×3=0.34,
所求的回归方程为$\widehaty=0.22x+0.34$.
(2)由(1)知,当x=7时,$\widehaty=0.22×7+0.34=1.88$,
于是预测2017年第七届中国柳州国际水上狂欢节到柳州的外地游客可达18万8千人.

点评 函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求a,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.三角形ABC中sinA=$\frac{4}{5}$,cosB=$\frac{5}{13}$,c=56,求sinC及三角形ABC外接圆的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\overrightarrow{a}$与$\overrightarrow{b}$是非零向量,且|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$的方向与$\overrightarrow{a}$+$\overrightarrow{b}$的方向所成的角是(  )
A.B.60°C.30°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在某商业区周边有两条公路l1和l2,在点O处交汇;该商业区为圆心角$\frac{π}{3}$、半径3km的扇形.现规划在该商业区外修建一条公路AB,与l1,l2分别交于A,B,要求AB与扇形弧相切,切点T不在l1,l2上.
(1)设OA=akm,OB=bkm试用a,b表示新建公路AB的长度,求出a,b满足的关系式,并写出a,b的范围;
(2)设∠AOT=α,试用α表示新建公路AB的长度,并且确定A,B的位置,使得新建公路AB的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是一个几何体的三视图,则该几何体的体积为(  )
A.16B.$4\sqrt{2}$C.48D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y=\sqrt{16-{4}^{x}}$的值域是(  )
A.(0,4)B.(-∞,4)C.(4,+∞)D.[0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某教育机构为了解本地区高三学生上网的情况,随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生每天上网时间的频率分布直方图:将每天上网时间不低于40分钟的学生称为“上网迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“上网迷“与性别有关?
非上网迷上网迷合计
1055
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量高三学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“上网迷”人数为X.若每次抽取的结果是相互独立的,求X=2的概率.
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{({n}_{11}+{n}_{12})({n}_{21}+{n}_{22})({n}_{11}+{n}_{21})({n}_{12}+{n}_{22})}$,
P(X2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线a2x+y+7=0和直线x-2ay+1=0垂直,则实数a的值为0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.等差数列{an}的前n项和为${S_n}=\frac{{{n^2}+3n}}{2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足${b_n}=\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案