精英家教网 > 高中数学 > 题目详情
4.若函数y=f(x-1)的图象过点(2,3),则(  )
A.f(2)=3B.f(3)=2C.f(1)=3D.f(3)=1

分析 由已知中函数y=f(x-1)的图象过点(2,3),可得f(2-1)=3,整理可得答案.

解答 解:∵函数y=f(x-1)的图象过点(2,3),
∴f(2-1)=3,
即f(1)=3,
故选:C.

点评 本题考查的知识点是函数的值,图象上的点与方程的关系,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.化简:
(1)$\frac{cos(-α)tan(7π+α)}{sin(π+α)}$
(2)$\frac{sin(π-α)sin(π+α)}{tan(2π-α)sin(2π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,P是圆O外一点,PA,PB是圆O的两条切线,切点分别为A,B,PA中点为M,过M作圆O的一条割线交圆O于C,D两点,若PB=8,MC=2,则CD=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P(-4t,t)在角α的终边上,且α∈(0,π),求$\frac{sinα•(1-ta{n}^{2}α)}{\frac{1}{cosα}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若关于x的方程x2-ax+1-a=0在区间[2,+∞)上有解,则a的取值范围是[$\frac{5}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设ω>0,函数f(x)=2tanωx的最小正周期为T,若f(x)是区间$(-\frac{π}{3},\frac{π}{4})$上的单调函数,则T的取值范围是[$\frac{2π}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=sinx+cosx的单调增区间为$[-\frac{3}{4}π+2kπ,\frac{π}{4}+2kπ]k∈Z$;已知$cos(α+\frac{π}{12})=\frac{3}{5}$,且$α∈(0,\frac{π}{2})$,则$f(2α+\frac{π}{12})$=$\frac{{24\sqrt{6}-7\sqrt{2}}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于在R上的可导的函数f(x),若满足(x-1)f′(x)≥0,则f(0)+f(2)>2f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.计算sin77°cos47°-sin13°cos43°的值等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案