精英家教网 > 高中数学 > 题目详情
13.对于在R上的可导的函数f(x),若满足(x-1)f′(x)≥0,则f(0)+f(2)>2f(1).

分析 由条件分别判断函数的单调性,利用函数的单调性进行比较大小.

解答 解:∵(x-1)f′(x)≥0,
∴当x>1时,f′(x)≥0,此时函数单调递增,
当x<1时,f′(x)≤0,此时函数单调递减,
∴f(2)>f(1),f(0)>f(1),
∴f(0)+f(2)>2f(1).
故答案为:>.

点评 本题主要考查函数的单调性与导数之间的关系,利用条件不等式判断函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知复数z=x+yi(x,y∈R,x≠0)且|z-2|=$\sqrt{3}$,则$\frac{y}{x}$的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=f(x-1)的图象过点(2,3),则(  )
A.f(2)=3B.f(3)=2C.f(1)=3D.f(3)=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,-1).
(Ⅰ)求$|{2\overrightarrow a-\overrightarrow b}|$;
(Ⅱ)设向量$\overrightarrow c=x\overrightarrow a+{x^2}\overrightarrow b$,若$\overrightarrow b$与$\overrightarrow c$的夹角为钝角,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x、y的取值如表所示:
x0134
y2.24.34.86.7
若从散点图分析,y与x线性相关,且线性回归直线方程为$\widehat{y}$=0.95x+$\widehat{a}$,则$\widehat{a}$的值等于2.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(1,1),B(3,5),若点C(-2,y)在直线AB上,则y的值是(  )
A.-5B.2.5C.5D.-2.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知正方形ABCD边长为$\sqrt{2}$,则|$\overrightarrow{AB}$+2$\overrightarrow{AC}$+$\overrightarrow{AD}$|=(  )
A.2B.2$\sqrt{2}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]=3$
[$\sqrt{4}$]+[$\sqrt{5}$]+[$\sqrt{6}$]+[$\sqrt{7}$]+[$\sqrt{8}$]=10
[$\sqrt{9}$]+[$\sqrt{10}$]+[$\sqrt{11}$]+[$\sqrt{12}$]+[$\sqrt{13}$]+[$\sqrt{14}$]+[$\sqrt{15}$]=21

按照此规律第n个等式的等号右边的结果为n(2n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=ax2+bx+c(a,b,c∈R).
(1)若f(1)=0,a>b>c,求证:$\sqrt{{b}^{2}-ac}$<$\sqrt{3}$a.
(2)若f(1)=-$\frac{a}{2}$,3a>2c>2b,求证:
①a>0,且-3<$\frac{b}{a}$<-$\frac{3}{4}$;
②函数f(x)在区间(0,2)内至少有一个零点.

查看答案和解析>>

同步练习册答案