精英家教网 > 高中数学 > 题目详情
8.已知x、y的取值如表所示:
x0134
y2.24.34.86.7
若从散点图分析,y与x线性相关,且线性回归直线方程为$\widehat{y}$=0.95x+$\widehat{a}$,则$\widehat{a}$的值等于2.6.

分析 求出样本中心坐标,代入回归直线方程,求解即可.

解答 解:由题意可得:$\overline{x}$=$\frac{0+1+3+4}{4}$=2,
$\overline{y}$=$\frac{2.2+4.3+4.8+6.7}{4}$=4.5.
线性回归直线方程为$\widehat{y}$=0.95x+$\widehat{a}$,结果样本中心,可得$\hat{a}$=4.5-0.95×2=2.6.
故答案为:2.6.

点评 本题考查回归直线方程的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.把正整数数列的所有数按照从小到大的原则写成如图所示的数表,第k行有k个数,第k行的第s个数(从左数起)记为A(k,s),则2015这个数可记为A(63,62).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若关于x的方程x2-ax+1-a=0在区间[2,+∞)上有解,则a的取值范围是[$\frac{5}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=sinx+cosx的单调增区间为$[-\frac{3}{4}π+2kπ,\frac{π}{4}+2kπ]k∈Z$;已知$cos(α+\frac{π}{12})=\frac{3}{5}$,且$α∈(0,\frac{π}{2})$,则$f(2α+\frac{π}{12})$=$\frac{{24\sqrt{6}-7\sqrt{2}}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a3+a4+a5=12,那么{an}的前7项和S7=(  )
A.22B.24C.26D.28

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于在R上的可导的函数f(x),若满足(x-1)f′(x)≥0,则f(0)+f(2)>2f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,7),则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$的方向上的投影为(  )
A.$\frac{\sqrt{13}}{13}$B.$\sqrt{13}$C.$\frac{\sqrt{65}}{5}$D.$\sqrt{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.与角-420°终边相同的角是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于△ABC,有如下四个命题:
①若sin2A=sin2B,则△ABC为等腰三角形,
②若sinB=cosA,则△ABC是直角三角形
③若sin2A+sin2B<sin2C,则△ABC是钝角三角形
④若$\frac{a}{cos\frac{A}{2}}$=$\frac{b}{cos\frac{B}{2}}$=$\frac{c}{cos\frac{C}{2}}$,则△ABC是等边三角形.
其中正确的命题的序号是③④.

查看答案和解析>>

同步练习册答案