精英家教网 > 高中数学 > 题目详情
2.设Sn是等比数列{an}的前n项和,S4=5S2,则此数列的公比q=(  )
A.-2或-1B.1或2C.±1或2D.±2或-1

分析 对q分类讨论,利用等比数列的求和公式即可得出.

解答 解:q=1时不满足条件,舍去.
q≠1时,∵S4=5S2,则$\frac{{a}_{1}(1-{q}^{4})}{1-q}$=$\frac{5{a}_{1}(1-{q}^{2})}{1-q}$,
∴1-q4=5(1-q2),
∴(q2-1)(q2-4)=0,q≠1,
解得q=-1,或±2.
故选:D.

点评 本题考查了等比数列的求和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知圆C:x2+y2+2kx+2y+k2=0(k∈R)和定点P(1,-1),若过P点可以作两条直线与圆C相切,则k的取值范围是(0,+∞)∪(-∞,-2)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用描述法表示图中阴影部分的点(含边界)的坐标的集合为{(x,y)|xy>0,且-1≤x≤2,-$\frac{1}{2}$≤y≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:
X1234
Y51484542
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)完成下表,并求所种作物的平均年收获量:
Y51484542
频数    
(2)在所种年收获量为51或48的作物中随机选取两株求收获量之和,收获量之和为t的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.探究函数f(x)=2x+$\frac{8}{x}$,x∈(0,+∞)最小值,并确定取得最小值时x的值.列表如下:
x0.511.51.71.922.12.22.33457
y17108.348.18.0188.018.048.088.61011.615.14
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)上递减;函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)递减.
(3)思考:函数f(x)=2x+$\frac{8}{x}$(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=n2-4n.
(1)求数列{an}的通项公式;
(2)求Sn的最大或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)=mx-$\frac{1}{3}$恰有四个不等的实数根,则实数m的取值范围是($\frac{1}{3}$,${e}^{-\frac{2}{3}}$) .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\frac{1}{2}$x2-2ax+blnx+2a2在x=1处取得极值$\frac{1}{2}$,则a+b=(  )
A.-1B.2C.-1或1D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=|x|-1的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案