精英家教网 > 高中数学 > 题目详情
[2014·南通调研]设α,β是空间内两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用序号表示).
①③④⇒②(或②③④⇒①)
将①③④作为条件,可结合长方体进行证明,即从长方体的一个顶点出发的两条棱与其对面垂直,这两个对面互相垂直,故①③④⇒②;对于②③④⇒①,可仿照前面的例子说明.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,⊥平面,,分别为线段的中点.

(1)求证:∥平面;    
(2)求证:⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,点在边上,
(1)求证:平面
(2)如果点的中点,求证://平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,点的中点。

(1)求证:直线∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,平面.以
为邻边作平行四边形,连接

(1)求证:∥平面 ;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若
不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间三点A(1,3,2),B(1,2,1),C(-1,2,3),则下列向量中是平面ABC的法向量的为(  )
A.(-1,-2,5)B.(1,3,2)C.(1,1,1)D.(-1,1,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线,是两个不同的平面.则下列命题中正确的是(    )
A.m⊥,n,m⊥n
B.=m,n⊥mn⊥
C.,m⊥,n∥m⊥n
D.,m⊥,n∥m⊥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·南京模拟]已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:
①若l?α,m?α,l∥β,m∥β,则α∥β;
②若l?α,l∥β,α∩β=m,则l∥m;
③若α∥β,l∥α,则l∥β;
④若l⊥α,m∥l,α∥β,则m⊥β.
其中真命题是________(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,上一点,面,四边形为矩形 ,,
(1)已知,且∥面,求的值;
(2)求证:,并求点到面的距离.

查看答案和解析>>

同步练习册答案