精英家教网 > 高中数学 > 题目详情
14.解方程:$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$=25-2x.

分析 构造函数y=$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$y=25-2x.判断y=$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$为增函数,y=25-2x.减函数,利用开方判断即可.

解答 解:y=$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$
y=25-2x.

根据函数的单调性得出:y=$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$为增函数,
y=25-2x.减函数,
交点只有一个,
所以方程:$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$=25-2x.只有一个根.
x=4方程成立,

点评 本题考查了函数的思想,方程的求解,利用函数图象求解问题,关键发现特殊值的验证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,已四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD=2,点M、N分别在PD、PC上,2PN=NC,PM=MD
(1)求证:PC⊥平面AMN;
(2)求四面体P-ABN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某村欲修建一横断面为等腰梯形的水渠(如图),为降低成本,必须尽量减少水与水渠壁的接触面,若水渠的横断面面积设计为定值m,渠深3米,则水渠侧壁的倾斜角α应为多少时,方能使修建成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}$为非零向量,$\overrightarrow{b}$=(3,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,求$\overrightarrow{a}$的单位向量$\overrightarrow{{a}_{0}}$=($\frac{4}{5}$,-$\frac{3}{5}$)或(-$\frac{4}{5}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在8和200之间插入三个数,使它们构成等比数列,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$ $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)2$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)2$\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)(y-$\overrightarrow y$)$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)(y-$\overrightarrow y$)
46.656.36.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答
当年宣传费x=49时,年销售量及年利润的预报值是多少?
附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,设三棱柱ABC-A1B1C1的体积为2,P、Q分别是侧棱AA1、CC1上的点,且AP=QC1,则四棱锥B-APQC的体积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正六棱锥P-ABCDEF中,AB=1,若平面PAB⊥平面PDE,则PA=$\frac{{\sqrt{7}}}{2}$,该正六棱锥的体积是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.观察下列等式
l+2+3+…+n=$\frac{1}{2}$n(n+l);
l+3+6+…+$\frac{1}{2}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+…$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{24}$n(n+1)(n+2)(n+3);
可以推测,1+5+15+…+$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4),(n∈N*).

查看答案和解析>>

同步练习册答案