精英家教网 > 高中数学 > 题目详情
3.已知x>0,y>0,$\frac{1}{x}$+$\frac{2}{y}$=2,则2x+y的最小值为4.

分析 由题意可得2x+y=$\frac{1}{2}$($\frac{1}{x}$+$\frac{2}{y}$)(2x+y)=$\frac{1}{2}$(4++$\frac{y}{x}$+$\frac{4x}{y}$),运用基本不等式即可得到最小值.

解答 解:∵x>0,y>0,$\frac{1}{x}$+$\frac{2}{y}$=2,
∴2x+y=$\frac{1}{2}$($\frac{1}{x}$+$\frac{2}{y}$)(2x+y)=$\frac{1}{2}$(4++$\frac{y}{x}$+$\frac{4x}{y}$)≥$\frac{1}{2}$(4+2$\sqrt{\frac{y}{x}•\frac{4x}{y}}$)=4,
当且仅当y=2x=2时取等号.
故答案为:4.

点评 本题考查基本不等式的运用:求最值,注意运用乘1法和满足条件:一正二定三等,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex-ax,a∈R.
(Ⅰ)若函数f(x)在x=0处的切线过点(1,0),求a的值;
(Ⅱ)若函数f(x)在(-1,+∞)上不存在零点,求a的取值范围;
(Ⅲ)若a=1,求证:对$x∈R,f(x)≥\frac{1+x}{f(x)+x}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-2x-24=0,直线ax-y+5=0(a>0)与圆交于A,B两点.
(Ⅰ)求实数a的取值范围;
(Ⅱ)若弦AB的垂直平分线l过点P(-2,4),求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在整数集Z中,被5所除得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4;给出四个结论:
(1)2015∈[0];(2)-3∈[3];(3)Z=[0]∪[1]∪[2]∪[3]∪[4];(4)“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆16x2+25y2=400的长轴长为(  )
A.5B.10C.25D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:(x-a)2+(y-2+a)2=1,点A(3,0),O为坐标原点.
(Ⅰ)若a=1,求圆C过点A的切线方程;
(Ⅱ)若直线l:x-y+1=0与圆C交于M、N两点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{3}{2}$,求a的值;
(Ⅲ)若圆C上存在点P,满足|OP|=2|AP|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sinx(sinx-cosx).
(1)求函数f(x)的最小正周期和最小值;
(2)若$A∈(0,\frac{π}{4})$,且$f(\frac{A}{2})=1-\frac{{4\sqrt{2}}}{5}$,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:4x+ay-5=0与直线l′:x-2y=0相互垂直,圆C的圆心与点(2,1)关于直线l对称,且圆C过点M(-1,-1).
(1)求直线l与圆C的方程;
(2)已知N(2,0),过点M作两条直线分别与圆C交于P,Q两点,若直线MP,MQ的斜率满足kMP+kMQ=0,求证:直线PQ的斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线l的极坐标方程为2ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,点A的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$),则点A到直线l的距离为(  )
A.$\frac{5}{3}\sqrt{3}$B.$\frac{5}{2}\sqrt{3}$C.$\frac{5}{3}\sqrt{2}$D.$\frac{5}{2}\sqrt{2}$

查看答案和解析>>

同步练习册答案