精英家教网 > 高中数学 > 题目详情
17.解不等式:|2x+1|≤|5-3x|

分析 将|2x+1|≤|5-3x|两边平方,再由二次不等式的解法即可得到解集.

解答 解:将|2x+1|≤|5-3x|两边平方,可得
4x2+4x+1≤25-30x+9x2
即为(5x-4)(x-6)≥0,
解得x≥6或x≤$\frac{4}{5}$,
即有解集为(-∞,$\frac{4}{5}$]∪[6,+∞).

点评 本题考查绝对值不等式的解法,注意运用平方法去绝对值,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知{an},{bn}均为等比数列,其前n项和分别为Sn,Tn,若对任意的n∈N*,总有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{{3}^{n}+1}{4}$,则$\frac{{a}_{3}}{{b}_{3}}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和是Sn,且2Sn=3an-2n
(1)证明:{an+1}为等比数列;
(2)证明:$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<$\frac{1}{4}$;
(3)Tn为数列{bn}的前n项和,设bn=log3(an+1),是否存在正整数m,k,使b${\;}_{k+1}^{2}$=2Tm+19成立,若存在,求出m,k;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,某广场为一半径为80米的半圆形区域,现准备在其一扇形区域OAB内建两个圆形花坛,该扇形的圆心角为变量2θ(0<2θ<π),其中半径较大的花坛⊙P内切于该扇形,半径较小的花坛⊙Q与⊙P外切,且与OA、OB相切.
(1)求半径较大的花坛⊙P的半径(用θ表示);
(2)求半径较小的花坛⊙Q的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的非常值函数f(x)满足y=f(x+1)和y=f(x-1)都是奇函数,则函数y=f(x)一定是(  )
A.偶函数B.奇函数
C.周期函数D.以上结论都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若圆C:(x-a)2+[y-(2a-4)]2=1与圆D:x2+(y+1)2=4有公共点,则a的取值范围是(2-$\frac{2\sqrt{5}}{5}$,2+$\frac{2\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过抛物线y2=4x的焦点的直线交抛物线于A,B两点,过A,B两点的切线相交于P,则S△PABmin=(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-2ax+1在区间(0,1)和(1,3)上各有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=-$\frac{x}{\sqrt{{x}^{2}+2x+2}}$的值域.

查看答案和解析>>

同步练习册答案