精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),则实数a的取值范围是(  )
A.[-1,0)B.(0,1)C.[-1,1]D.[-2,2]

分析 根据条件判断函数f(x)的奇偶性和单调性,把不等式f(-a)+f(a)≤2f(1)转化为f(|a|)≤f(1)进行求解即可.

解答 解:若x<0,则-x>0,则f(-x)=x2-2x=f(x),
若x>0,则-x<0,则f(-x)=x2+2x=f(x),
故f(-x)=f(x),
则函数f(x)为偶函数,且当x≥0时,函数单调递增,
则不等式f(-a)+f(a)≤2f(1)等价为2f(a)≤2f(1),
即f(a)≤f(1),
即f(|a|)≤f(1),
则|a|≤1,
解得-1≤a≤1,
故选:C

点评 本题考查分段函数求值及不等式的解法,根据条件判断函数的奇偶性和单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在三棱锥P-ABC中,PB⊥平面ABC,AB⊥BC,PB=AB,D,E分别是PA,PC的中点,G,H分别是BD,BE的中点.
(1)求证:GH∥平面ABC;
(2)求证:平面BCD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点都在坐标原点O,点F是椭圆C1的右焦点,点M位于x轴上方且在抛物线C2的准线上,已知曲线C1:C2上各有两点,其坐标关系如下表:
x-4-1-$\frac{1}{2}$0
y-8$\frac{3}{2}$2$\sqrt{2}$$\sqrt{3}$
(Ⅰ)求C1、C2的方程;
(Ⅱ)求以线段OM为直径且被直线5x+12y-9=0截得的弦长为4的圆C的方程;
(Ⅲ)过点F斜率为k(k≠0)的直线l与C1交于P、Q两点,与圆C交于A、B两点.问:是否存在直线l,使得线段PQ与线段AB有相同的中点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}中,a2=2,a5=$\frac{1}{4}$,则a1+a2+a3+…+an的取值范围为{8(1-$\frac{1}{{2}^{n}}$)|n∈N*}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(1)求证:CD⊥平面CPAC;
(2)如果N是棱AB上一点,且直线CN与平面MAB所E,F成角的正弦值为$\frac{{\sqrt{10}}}{5}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线$\sqrt{x}$+$\sqrt{y}$=1与两坐标轴所围成图形的面积是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+2alnx.求函数f(x)的单调区间;.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x,y都是正实数,比较$\sqrt{{x}^{2}+{y}^{2}}$与(x3+y3)${\;}^{\frac{1}{3}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正四棱锥S-ABCD的底面边长为4cm,侧棱长为8cm,求棱锥的高SO,斜高SE.(作图)

查看答案和解析>>

同步练习册答案