精英家教网 > 高中数学 > 题目详情
16.若f(x)+${∫}_{0}^{1}$f(x)dx=x,则${∫}_{0}^{1}$f(x)dx=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 由f(x)=x-${∫}_{0}^{1}$f(x)dx,利用定积分的运算,求得${∫}_{0}^{1}$f(x)dx=$\frac{1}{2}$-${∫}_{0}^{1}$f(x)dx,即可求得答案.

解答 解:由f(x)+${∫}_{0}^{1}$f(x)dx=x,则f(x)=x-${∫}_{0}^{1}$f(x)dx,
则${∫}_{0}^{1}$f(x)dx=${∫}_{0}^{1}$(x-${∫}_{0}^{1}$f(x)dx)dx=${∫}_{0}^{1}$xdx-${∫}_{0}^{1}$[${∫}_{0}^{1}$f(x)dx]dx=$\frac{1}{2}$-${∫}_{0}^{1}$f(x)dx,
∴${∫}_{0}^{1}$f(x)dx=$\frac{1}{2}$-${∫}_{0}^{1}$f(x)dx,
则${∫}_{0}^{1}$f(x)dx=$\frac{1}{4}$,
故选A.

点评 本题考查定积分的运算,考查定积分的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.曲线y=xlnx在点(e,e)处的切线斜率为(  )
A.eB.2eC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的前n项和为Sn,若函数f(x)=sinx+$\sqrt{3}$cosx(x∈R)的最大值为a1,且满足an-anSn+1=$\frac{{a}_{1}}{2}$-anSn,则数列{an}的前2017项之积A2017=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知离心率为$\frac{{\sqrt{2}}}{2}$的椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({1,-\frac{{\sqrt{2}}}{2}})$,点F1,F2分别为椭圆的左、右焦点,过F1的直线l与C交于A,B两点,且${S_{△AB{F_2}}}=\frac{{4\sqrt{3}}}{5}$.
(1)求椭圆C的方程;
(2)求证:以AB为直径的圆过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线为l,圆C:(x-a)2+y2=8与l交于A,B两点,若△ABC是等腰直角三角形,且$\overrightarrow{OB}=5\overrightarrow{OA}$(其中O为坐标原点),则双曲线Γ的离心率为(  )
A.$\frac{{\sqrt{13}}}{3}$B.$\frac{{2\sqrt{13}}}{3}$C.$\frac{{\sqrt{13}}}{5}$D.$\frac{{2\sqrt{13}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{6}t\end{array}$(t为参数),曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数).
(1)设l与C1相交于A,B两点,求|AB|;
(2)若把曲线C1上各点的横坐标压缩为原来的$\frac{1}{2}$倍,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某种产品的质量以其质量指标衡量,并依据质量指标值划分等级如表:
质量指标值mm<185185≤m<205M≥205
等级三等品二等品一等品
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查的数据,能否认为该企业生产这种产品符合“一、二等品至少要占到全部产品的92%的规定”?
(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品的质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某校组织10名学生参加高校的自主招生活动,其中6名男生,4名女生,根据实际要从10名同学中选3名参加A校的自主招生,则其中恰有1名女生的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,a,b,c分别为角A,B,C所对的边,若(a+c+b)(b+a-c)=3ab,则C=(  )
A.150°B.60°C.120°D.30°

查看答案和解析>>

同步练习册答案