精英家教网 > 高中数学 > 题目详情

已知函数y=2-x2+ax+1在区间(-∞,3)内递增,求a的取值范围.

 

[6,+∞)

【解析】【解析】
函数y=2-x2+ax+1是由函数y=2t和t=-x2+ax+1复合而成.

因为函数t=-x2+ax+1在区间(-∞,]上单调递增,在区间[,+∞)上单调递减,且函数y=2t在R上单调递增,

所以函数y=2-x2+ax+1在区间(-∞,]上单调递增,在区间[,+∞)上单调递减.

又因为函数y=2-x2+ax+1在区间(-∞,3)内单调递增,所以3≤

即a≥6.故a的取值范围为[6,+∞).

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-3三角函数的图象与性质(解析版) 题型:选择题

若函数f(x)=2sin(2x+φ)(|φ|<)与g(x)=cos(ωx-)(ω>0)的图象具有相同的对称中心,则φ=(  )

A. B. C.- D.-

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:解答题

已知不等式x2-logax<0,当x∈(0,)时恒成立,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:填空题

设a>0且a≠1,函数f(x)=alg(x2-2x+3)有最大值,则不等式loga(x2-5x+7)>0的解集为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:选择题

函数y=(-x2+6x)的值域(  )

A.(0,6) B.(-∞,-2] C.[-2,0) D.[-2,+∞)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-5指数及指数函数(解析版) 题型:选择题

已知一元二次不等式f(x)<0的解集为{x|x<-1或x>},则f(10x)>0的解集为(  )

A.{x|x<-1或x>-lg2} B.{x|-1<x<-lg2}

C.{x|x>-lg2} D.{x|x<-lg2}

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:选择题

已知周期函数f(x)的定义域为R,周期为2,且当-1<x≤1时,f(x)=1-x2.若直线y=-x+a与曲线y=f(x)恰有2个交点,则实数a的所有可能取值构成的集合为(  )

A.{a|a=2k+或2k+,k∈Z}

B.{a|a=2k-或2k+,k∈Z}

C.{a|a=2k+1或2k+,k∈Z}

D.{a|a=2k+1,k∈Z}

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:解答题

已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.

(1)求证:f(x)是偶函数;

(2)求证:f(x)在(0,+∞)上是增函数.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域(解析版) 题型:选择题

已知函数f(x)的定义域为[3,6],则函数y=的定义域为(  )

A.[,+∞) B.[,2)

C.(,+∞) D.[,2)

 

查看答案和解析>>

同步练习册答案