| A. | ω=2 | B. | 函数f(x)的对称轴为x=-$\frac{π}{2}$+kx(k∈Z) | ||
| C. | 函数f(x)的对称中心为($\frac{π}{2}$+kx,0)(k∈Z) | D. | 函数f(x)在[$\frac{π}{2}$,$\frac{2π}{3}$]上的最小值为-$\sqrt{3}$+1 |
分析 化函数f(x)为余弦型函数,利用余弦函数的单调性求得f(x)的减区间,结合条件可求得ω的最大值,再写出f(x)的解析式,从而判断选项是否正确即可.
解答 解:函数f(x)=2cosωx-2sinωx=2$\sqrt{2}$cos(ωx+$\frac{π}{4}$)(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递减,
∴2kπ≤ωx+$\frac{π}{4}$≤2kπ+π,求得-$\frac{π}{4ω}$+$\frac{2kπ}{ω}$≤x≤$\frac{3π}{4ω}$+$\frac{2kπ}{ω}$ (k∈Z).
∵f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递减,
∴-$\frac{π}{4ω}$≤-$\frac{π}{2}$,且$\frac{3π}{4ω}$≥$\frac{π}{2}$,
求得 0<ω≤$\frac{1}{2}$,∴ωmax=$\frac{1}{2}$,A错误;
∴f(x)=2$\sqrt{2}$cos($\frac{1}{2}$x+$\frac{π}{4}$),
令$\frac{1}{2}$x+$\frac{π}{4}$=kπ,k∈Z,解得f(x)的对称轴是x=2kπ-$\frac{π}{2}$,k∈Z,B错误;
令$\frac{1}{2}$x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,解得f(x)的对称中心是(2kπ+$\frac{π}{2}$,0),k∈Z,C错误;
x∈[$\frac{π}{2}$,$\frac{2π}{3}$]时,$\frac{1}{2}$x+$\frac{π}{4}$∈[$\frac{π}{2}$,$\frac{7π}{12}$],f(x)是单调减函数,
其最小值为2$\sqrt{2}$cos$\frac{7π}{12}$=-$\sqrt{3}$+1,D正确.
故选:D.
点评 本题主要考查两角和的余弦公式以及余弦函数的单调性问题,是综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 1 | 2 | 3 | 4 |
| y | m | 3.2 | 4.8 | 7.5 |
| A. | l | B. | 0.85 | C. | 0.7 | D. | 0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 1 | C. | 18 | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com