精英家教网 > 高中数学 > 题目详情
5.如图,一栋建筑物AB高(30-10$\sqrt{3}$)m,在该建筑 物的正东方向有一个通信塔CD.在它们之间的地面M点(B、M、D三点共线)测得对楼顶A、塔顶C的仰角分别是15°和60°,在楼顶A处 测得对塔顶C的仰角为30°,则通信塔CD的高为60m.

分析 设AE⊥CD,垂足为E,在△AMC中,利用正弦定理,求出AC,即可得出结论.

解答 解:设AE⊥CD,垂足为E,则在△AMC中,AM=$\frac{AB}{sin15°}$=20$\sqrt{6}$,∠AMC=105°,∠C=30°,
∴$\frac{AC}{sin105°}=\frac{20\sqrt{6}}{sin30°}$,
∴AC=60+20$\sqrt{3}$,
∴CE=30+10$\sqrt{3}$,
∴CD=30-10$\sqrt{3}$+30+10$\sqrt{3}$=60,
故答案为:60.

点评 本题考查利用数学知识解决实际问题,考查正弦定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.${(\frac{5}{{\sqrt{x}}}-x)^m}$的展开式中各项系数的和为256,则该展开式的二项式系数的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设i为虚数单位,复数$z=\frac{1-i}{3-i}$的虚部是(  )
A.$\frac{1}{5}$B.$-\frac{1}{5}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-1|-|2x+1|的最大值为m
(1)作函数f(x)的图象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图程序框图,输出a的结果为(  )
A.初始值aB.三个数中的最大值
C.三个数中的最小值D.初始值c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(理)已知是虚数单位,若$\frac{3+ai}{1-i}$是纯序数,则实数a的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,以原点为圆心,椭圆C的短半轴长为半径的圆与直线$x-y+\sqrt{2}=0$相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交与A,B两点,O为坐标原点,则在椭圆C上是否存在点P,使得四边形OAPB为平行四边形?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线2x+my=2m-4与直线mx+2y=m-2平行的充要条件是(  )
A.m=0B.m=±2C.m=2D.m=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知所数f(x)=2cosωx-2sinωx(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递减,则当ω取得最大值时,下列说法正确的是(  )
A.ω=2B.函数f(x)的对称轴为x=-$\frac{π}{2}$+kx(k∈Z)
C.函数f(x)的对称中心为($\frac{π}{2}$+kx,0)(k∈Z)D.函数f(x)在[$\frac{π}{2}$,$\frac{2π}{3}$]上的最小值为-$\sqrt{3}$+1

查看答案和解析>>

同步练习册答案