精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-x+1,x>0\end{array}$,若a=f(${log_2}\frac{1}{3}$),b=f(${2^{\frac{1}{3}}}$),c=f(${3^{-\frac{1}{2}}}$),则(  )
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

分析 函数f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-x+1,x>0\end{array}$在R上减函数,比较三个自变量的大小,可得答案.

解答 解:函数f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-x+1,x>0\end{array}$在R上减函数,
∵${log_2}\frac{1}{3}$∈(-∞,0),${2^{\frac{1}{3}}}$∈(1,+∞),${3^{-\frac{1}{2}}}$∈(0,1),
∴a>c>b,
故选:C.

点评 本题考查的知识点是分段函数的应用,函数的单调性,指数函数和对数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求满足下列条件的圆的方程:
(1)经过点P(5,1),圆心为点C(8,-3);
(2)求经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如表:
损坏餐椅数未损坏餐椅数总 计
学习雷锋精神前50150200
学习雷锋精神后30170200
总  计80320400
(1)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-3ax-1,(a≠0).
(1)求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有且只有一个交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ax3+2x2-1有且只有两个零点,则实数a的取值集合(  )
A.{-1,0,1}B.{0,$\frac{4\sqrt{6}}{9}$}C.{0,$\frac{2\sqrt{3}}{3}$}D.{-$\frac{4\sqrt{6}}{9}$,0,$\frac{4\sqrt{6}}{9}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x-alnx+$\frac{b}{x}$在x=1处取得极值.
(Ⅰ)求a与b满足的关系式;
(Ⅱ)若a>3,求函数f(x)的单调区间;
(Ⅲ)若a>3,函数g(x)=a2x2+3,若存在m1,m2∈[$\frac{1}{2}$,2],使得|f(m1)-g(m2)|<9成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC的AB边中点为D,AC=1,BC=2,则$\overrightarrow{AB}$•$\overrightarrow{CD}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某农场有一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)种植地,农场主计划对其合理利用,其中扇形AOB区域用于种植作物甲出售,△BOC区域用于种植作物乙出售,其余区域用于种植作物丙不出售,已知种植作物甲的利润是40元/平方米;种植作物乙的利润是80元/平方米;种植作物丙的成本是20元/平方米.
(1)设∠AOB=θ(单位:弧度,0<θ<π),用θ表示弓形BCD的面积f(θ);
(2)求总利润最大时cosθ的大小,并计算此时作物乙的种植面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={x|x2-4x+3=0},B={x|x2-5x+4=0},集合A∪B为(  )
A.{1}B.{1,3}C.{1,4}D.{1,3,4}

查看答案和解析>>

同步练习册答案