分析 由条件利用利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,可得结论.
解答 解:直线(2+λ)x+(λ-1)y-2λ-1=0,即 直线(2x-y-1)+λ(x+y-2)=0,
它一定经过2x-y-1=0 和x+y-2=0 的交点.
由 $\left\{\begin{array}{l}{2x-y-1=0}\\{x+y-2=0}\end{array}\right.$,求得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,可得直线(2+λ)x+(λ-1)y-2λ-1=0经过的定点坐标为(1,1),
故答案为:(1,1).
点评 本题主要考查直线过定点问题,利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | -512 | D. | 510 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1} | B. | {2} | C. | {1,2} | D. | {0,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a<b,则ac<bc | B. | 若a<b,c<d,则ac<bd | ||
| C. | 若a<b,则a-c<b-c | D. | 若a<b,则an<bn(n∈N*,n≥2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com