精英家教网 > 高中数学 > 题目详情
7.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为(  )
A.(x-1)2+y2=4B.(x-2)2+y2=4C.(x+1)2+y2=4D.(x+2)2+y2=4

分析 设出圆心坐标为C(a,0)(a>0),由点到直线的距离公式列式求得a值,代入圆的标准方程得答案.

解答 解:设圆心坐标为C(a,0)(a>0),
由题意得,$\frac{|3a+4×0+4|}{\sqrt{{3}^{2}+{4}^{2}}}=2$,解得a=2.
∴圆C的方程为(x-2)2+y2=4.
故选:B.

点评 本题考查圆的标准方程,考查了点到直线距离公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,9,要用(错位)系统抽样的方法抽取一个容量为8的样本,即规定先在第1组随机抽取一个号码,记为i,依次错位地得到后面各组的号码,即第k组中抽取个位数为i+k(当i+k<10)或i+k-10(当i+k≥10)的号码,在i=6时,所抽到的第8组的号码是74.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某企业有甲、乙两个研发小组,他们研发一件新产品成功的概率分别为$\frac{3}{4}$和$\frac{2}{3}$,本年度计划研发的新产品件数分别为2件和1件.设甲、乙两组的每次研发均相互独立.
(1)求该企业本年度至少有一件新产品研发成功的概率;
(2)已知研发一件新产品的成本为10百万元,成功研发一件新产品可获得50百万元的销售额,求该企业本年度在这3件新产品上获得的利润X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角α的终边经过点P(-1,1),则cosα的值为(  )
A.1B.-1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,且b2+c2=a2+bc.
(1)求角A的大小;
(2)若三角形的面积为$\sqrt{3}$,且b+c=5,求b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点P(3,1)在矩阵A=$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ 变换下得到点P′(5,-1).试求矩阵A和它的逆矩阵A-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,若圆x2+y2=a2被直线x-y-$\sqrt{2}$=0截得的弦长为2
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点A、B为动直线y=k(x-1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在极坐标系中,圆心在($\sqrt{2}$,π)且过极点的圆的方程为(  )
A.ρ=2$\sqrt{2}$cos θB.ρ=-2$\sqrt{2}$cos θC.ρ=2$\sqrt{2}$sin θD.ρ=-2$\sqrt{2}$sin θ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(1)求证:AB⊥DE;
(2)求直线EC与平面ABE所成角的正弦值;
(3)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出$\frac{EF}{EA}$;若不存在,说明理由.

查看答案和解析>>

同步练习册答案