精英家教网 > 高中数学 > 题目详情
如图,α,β,γ是三个平面,满足α⊥β,α⊥γ,β∩γ=a,求证:a⊥α
考点:直线与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:在a上任取一点P,过P作直线PQ⊥α,由面面垂直的性质定理,结合条件可得PQ与a重合,从而得证.
解答: 证明:在a上任取一点P,过P作直线PQ⊥α,
∵α⊥β,P∈β,
∴PQ?β,
∵α⊥γ,P∈γ,
∴PQ?γ,即γ∩β=PQ,∴PQ与a重合,
∴a⊥α.
点评:本题考查直线与平面的位置关系,考查面面垂直的性质定理,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

lg(x2+1)-2lg(x+3)+lg2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
2
x+a的反函数f-1(x)的图象过原点.
(1)若f-1(x-3),f-1
2
-1),f-1(x-4)成等差数列,求x的值;
(2)若互不相等的三个正数m、n、t成等比数列,问f-1(m),f-1(t),f-1(n)能否组成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示).将矩形折叠,使A点落在线段DC上.
(1)若折痕斜率为-1,求折痕所在的直线方程;
(2)若折痕所在直线的斜率为k,试求折痕所在直线的方程;
(3)当-2+
3
≤k≤0时,求折痕长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的方程6x-3×2x-2×3x+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
m
x
,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-
x
3
零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

9-x-2×31-x=27.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,f(x)=
x
x-a
,g(x)=
xex
x-a
,求曲线y=f(x)与y=g(x)在x=0处的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈R|x2-(a-1)x+b=0,a、b∈R},集合B={x|x2-bx-a=1,x∈R},若2013∈A,-1∈A,试用列举法表示集合B.

查看答案和解析>>

同步练习册答案