精英家教网 > 高中数学 > 题目详情
11.数列{an}中,已知a1=1,a2=2,若对任意正整数n,有anan+1an+2=an+an+1+an+2,且an+1an+2≠1,则该数列的前2016项和S2016=(  )
A.2016B.4032C.4026D.2013

分析 分别表示出anan+1an+2=an+an+1+an+2,an+1an+2an+3=an+1+an+2+an+3,两式相减可推断出an+3=an,进而可知数列{an}是以3为周期的数列,根据数列的周期性进行求解即可.

解答 解:依题意可知,anan+1an+2=an+an+1+an+2,an+1an+2an+3=an+1+an+2+an+3
两式相减得an+1an+2(an+3-an)=an+3-an
∵an+1an+2≠1,
∴an+3-an=0,即an+3=an
∴数列{an}是以3为周期的数列,
∵a1a2a3=a1+a2+a3,∴a3=3
∴S2016=672×(a1+a2+a3)=672×(1+2+3)=672×6=4032,
故选:B.

点评 本题主要考查了数列的递推式和数列的求和问题.本题的关键是找出数列的周期性.考查学生的推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若a<b<0,则下列不等式中不成立的是(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.$\frac{1}{a-b}$>$\frac{1}{a}$C.a3<b3D.|a|>|b|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x的一元二次方程ax2+2x-1=0有两个不相等正根的充要条件是(  )
A.a<-1B.-1<a<0C.a<0D.0<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M={x|(x+1)(x+2)<0},集合N=$\left\{{x\left|{{2^x}≥\frac{1}{4}}\right.}\right\}$,则 M∪N=(  )
A.{x|x≥-2}B.{x|x>-1}C.{x|x<-1}D.{x|x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点(-1,2)到直线y=x的距离是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合P={x|x2-4<0},则Q={x|x=2k+1,k∈Z},则P∩Q=(  )
A.{-1,1}B.[-1,1]C.{-1,-3,1,3}D.{-3,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中最小值为2的是(  )
A.y=log2x+logx2(0<x<1)B.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$
C.y=ex+e-xD.y=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示,则该几何体的侧视图的面积为2$\sqrt{3}$,体积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示.在△ABC中,已知AB<BC,点I为其内心,M为边AC上的中点,N为外接圆的弧$\widehat{ABC}$的中点.证明:∠IMA=∠INB.

查看答案和解析>>

同步练习册答案