精英家教网 > 高中数学 > 题目详情

若{an}是正项递增等比数列,Tn表示其前n项之积,且T4=T8,则当Tn取最小值时,n的值为________.

 

6

【解析】由T4=T8知,a5·a6·a7·a8=1,则(a6·a7)2=1,∵{an}为正项递增等比数列,∴a6·a7=1且a6<1,a7>1,故Tn取最小值时,n的值为6.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-4基本不等式(解析版) 题型:填空题

若a,b,c>0,且a2+ab+ac+bc=4,则2a+b+c的最小值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-5数列的综合应用(解析版) 题型:解答题

某企业为加大对新产品的推销力度,决定从今年起每年投入100万元进行广告宣传,以增加新产品的销售收入.已知今年的销售收入为250万元,经市场调查,预测第n年与第n-1年销售收入an与an-1(单位:万元)满足关系式:an=an-1+-100.

(1)设今年为第1年,求第n年的销售收入an;

(2)依上述预测,该企业前几年的销售收入总和Sn最大.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-4数列求和(解析版) 题型:解答题

已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.

(1)求数列{an}的通项公式与前n项和Sn;

(2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[],若存在,求m的值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-4数列求和(解析版) 题型:选择题

数列1,1+2,1+2+4,…,1+2+22+…+2n-1,…的前n项和Sn>1020,那么n的最小值是(  )

A.7 B.8 C.9 D.10

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-3等比数列及其前n项和(解析版) 题型:选择题

已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得=4a1,则的最小值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-2等差数列及其前n项和(解析版) 题型:填空题

已知数列{an}中a1=1,a2=2,当整数n>1时,Sn+1+Sn-1=2(Sn+S1)都成立,则S15=________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-1数列的概念与简单表示法(解析版) 题型:选择题

一函数y=f(x)的图象在给定的下列图象中,并且对任意an∈(0,1),由关系式an+1=f(an)得到的数列{an}满足an+1>an(n∈N*),则该函数的图象是(  )

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-3平面向量的数量积及应用(解析版) 题型:选择题

已知平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则·=(  )

A.-8 B.-6 C.6 D.8

 

查看答案和解析>>

同步练习册答案