精英家教网 > 高中数学 > 题目详情
8.如图是某几何体的三视图,则该几何体的体积为(  )
A.64+32πB.64+54πC.256+64πD.256+128π

分析 根据几何体的三视图,得出该几何体是长方体与圆柱体的组合体,由此求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是长和宽为8,高为4的长方体,
与底面直径为8,高为4的圆柱体的组合体,
如图所示;
∴该几何体的体积为
V正方体+V圆柱体=8×8×4+π×42×4=256+64π.
故选:C.

点评 本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex(其中e是自然对数的底数),?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$],使得不等式f(x1)+g(x2)≥m成立,则实数m的范围(  )
A.(-∞,-1-$\sqrt{2}$]B.(-∞,${e}^{\frac{π}{2}}$-$\sqrt{2}$]C.(-∞,-1-$\sqrt{2}$${e}^{\frac{π}{2}}$]D.(-∞,(-1-$\sqrt{2}$)${e}^{\frac{π}{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在正方体ABCD-A1B1C1D1中,直线B1B与平面A1C1D所成角的余弦值为$\frac{\sqrt{6}}{3}$.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在△ABC中,内角∠A、∠B、∠C的对边分别为a、b、c,面积S=$\frac{1}{4}$(a2+b2-c2).
(1)求∠C的度数;
(2)若S=$\sqrt{2}$,a+b=$\sqrt{17}$,求边c的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知P、Q两点的极坐标分别为(4,$\frac{2π}{3}$)、(2,$\frac{π}{3}$),在直角坐标系中,下列各点在线段PQ的垂直平分线上的为(  )
A.(0,2$\sqrt{3}$)B.(-$\frac{1}{2}$,2$\sqrt{3}$)C.(0,-2$\sqrt{3}$)D.(-$\frac{1}{2}$,-2$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正实数x,y满足$x+\frac{2}{x}+3y+\frac{4}{y}=10$,则xy的取值范围为[1,$\frac{8}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=Asin(ωx+φ)在x=1处取得最大值,则f(x+1)的图象关于y轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设公差不为零的等差数列{an}的前n项和为Sn,若S1、a2、S3成等比数列,则$\frac{a_4}{a_1}$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+a,x<\frac{1}{2}}\\{{4}^{x}-3,x≥\frac{1}{2}}\end{array}\right.$的最小值为-1,则实数a的取值范围是(  )
A.a≥-2B.a>-2C.a≥-$\frac{1}{4}$D.a>-$\frac{1}{4}$

查看答案和解析>>

同步练习册答案