精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=alnx﹣ex(a∈R).其中e是自然对数的底数.

(1)讨论函数f(x)的单调性并求极值;

(2)令函数g(x)=f(x)+ex,若x∈[1,+∞)时,g(x)≥0,求实数a的取值范围.

【答案】(1)见解析;(2)

【解析】

1)函数fx)的定义域为(0+∞).求出函数的导函数,然后对a分类讨论可得原函数的单调性并求得极值;

2)对gx)求导函数,对a分类讨论,当a0时,易得gx)为单调递增,有gx)≥g1)=0,符合题意.当a0时,结合零点存在定理可得存在x01)使g′(x0)=0,再结合g1)=0,可得当x1x0)时,gx)<0,不符合题意.由此可得实数a的取值范围.

1)函数fx)的定义域为(0+∞).

f′(x

a0时,f′(x)<0,可得函数fx)在(0+∞)上单调递减,fx)无极值;

a0时,由f′(x)>0得:0x,可得函数fx)在(0)上单调递增.

f′(x)<0,得:x,可得函数fx)在(+∞)单调递减,

∴函数fx)在x时取极大值为:f)=alna2a

2)由题意有gx)=alnxex+exx[1+∞).

g′(x

a0时,g′(x

故当x[1+∞)时,gx)=alnxex+ex为单调递增函数;

gx)≥g1)=0,符合题意.

a0时,g′(x,令函数hx

h′(x0c[1+∞),

可知:g′(x为单调递增函数,

g′(1)=a0g′(x

x时,g′(x)>0

∴存在x01)使g′(x0)=0

因此函数gx)在(1x0)上单调递减,在(x0+∞)上单调递增,

g1)=0,∴当x1x0)时,gx)<0,不符合题意.

综上,所求实数a的取值范围为[0+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假.

1)过一条直线的平面有无数多个;

2)如果两个平面有两个公共点,那么它们就有无数多个公共点,并且这些公共点都在直线上;

3)两个平面的公共点组成的集合,可能是一条线段;

4)两个相交平面可能存在不在一条直线上的3个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:

(Ⅰ)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?

(Ⅱ)如果语文和数学两科都特别优秀的共有3人.

(ⅰ)从(Ⅰ)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.

(ⅱ)根据以上数据,完成列联表并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.

语文特别优秀

语文不特别优秀

合计

数学特别优秀

数学不特别优秀

合计

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某铁制零件由一个正四棱柱和一个球组成,已知正四棱柱底面边长与球的直径均为1cm,正四棱柱的高为2cm.现有这种零件一盒共50kg,取铁的密度为.

1)估计有多少个这样的零件;

2)如果要给这盒零件的每个零件表面涂上一种特殊的材料,则需要能涂多少平方厘米的材料(球与棱柱接口处的面积不计,结果精确到)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的动点,过点的垂线,线段的中垂线交于点的轨迹为.

(1)求轨迹的方程;

(2)过且与坐标轴不垂直的直线交曲线两点,若以线段为直径的圆与直线相切,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数是:( )

①对于两个分类变量的随机变量的观测值来说,越小,判断“有关系”的把握程度越大;

②在相关关系中,若用拟合时的相关指数为,用拟合时的相关指数为,且,则的拟合效果好;

③利用计算机产生之间的均匀随机数,则事件“”发生的概率为

④“”是“”的充分不必要条件

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

合计

(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中选人,求恰好有名女性的概率;

(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲,乙两种图画纸,计划每种图画纸的生产量不少于8t已知生产甲种图画纸1t要用芦苇7t、黄麻3t、枫树5t;生产乙种图画纸1t要用芦苇3t、黄麻4t、枫树8 t.现在仓库内有芦苇300t、黄麻150t.枫树200t,试列出满足题意的不等式组.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:

最低气温(℃)

天数

11

25

36

16

2

以最低气温位于各区间的频率代替最低气温位于该区间的概率.

求11月份这种电暖气每日需求量(单位:台)的分布列;

若公司销售部以每日销售利润(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?

查看答案和解析>>

同步练习册答案