精英家教网 > 高中数学 > 题目详情
3.如图所示,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD=5m,宽AB=3m,其中一条小路定为AC,另一条小路过点D,问如何在BC上找到一点M,使得两条小路所在直线AC与DM相互垂直?

分析 建立直角坐标系,求出相关点的坐标,求出直线DM的方程,然后求解M的坐标即可.

解答 解:以B为坐标原点,BC所在直线为x轴,BA所在直线为y轴,
则:B(0,0),A(0,3),C(4,0),D(4,3),
kAC=$-\frac{3}{4}$,两条小路所在直线AC与DM相互垂直,可得kDM=$\frac{4}{3}$.DM所在直线方程为:y-3=$\frac{4}{3}$(x-4).
令y=0可得:x=$\frac{7}{4}$.
M所在位置距离B为:$\frac{7}{4}$m.

点评 本题考查直线方程的综合应用,直线垂直关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.计算:cos25°sin55°-cos65°cos55°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A(0,-5),B(0,-1),则以线段AB为直径的圆的方程是(  )
A.(x+3)2+y2=2B.x2+(y+3)2=4C.(x+3)2+y2=2D.(x-3)2+y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(4,-3),|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{21}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各值中,比tan$\frac{π}{5}$大的是(  )
A.tan(-$\frac{π}{7}$)B.tan$\frac{9π}{8}$C.tan35°D.tan(-142°)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若a>1,解关于x的不等式$\frac{ax}{x-2}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a=2${\;}^{-\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$$\frac{1}{5}$,则a、b、c的大小关系是b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果函数f(x)=-ax的图象过点$({3,-\frac{1}{8}})$,那么a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow a$=(1,2),$\overrightarrow b$=(-3,2),若k$\overrightarrow a$+2$\overrightarrow b$与2$\overrightarrow a$-4$\overrightarrow b$的夹角为钝角,则实数k的取值范围(-∞,-1)∪(-1,$\frac{50}{3}$).

查看答案和解析>>

同步练习册答案