精英家教网 > 高中数学 > 题目详情
8.为了得到函数y=sin(2x-$\frac{π}{3}$)的图象,只需把函数y=cos(2x-$\frac{4π}{3}$)的图象(  )
A.向左平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{4}$个单位长度
C.向左平移$\frac{π}{2}$个单位长度D.向右平移$\frac{π}{2}$个单位长度

分析 利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:把函数y=cos(2x-$\frac{4π}{3}$)=sin(2x-$\frac{5π}{6}$)的图象向左平移$\frac{π}{4}$个单位长度,
可得y=sin[2(x+$\frac{π}{4}$)-$\frac{5π}{6}$]=sin(2x-$\frac{π}{3}$)的图象,
故选:A.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.如图,在Rt△ABC中,两条直角边分别为AB=2$\sqrt{3}$,BC=2,P为△ABC内一点,∠BPC=90°,若∠APB=150°,则tan∠PBA=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,设命题p:椭圆C:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{8-m}$=1的焦点在x轴上:命题q:直线l:x-y+m=0与圆O:x2+y2=9有公共点.若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:|x-4|≤6,q:x2-m2-2x+1≤0(m>0),若¬p是¬q的必要不充分条件,则实数m的取值范围为(  )
A.[9,13]B.(3,9)C.[9,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的边长为2的等边三角形,动点P满足$\overrightarrow{BP}=\frac{1}{2}{sin^2}θ•\overrightarrow{BC}+{cos^2}θ•\overrightarrow{BA}(θ∈R)$,则$(\overrightarrow{PB}+\overrightarrow{PC})•\overrightarrow{PA}$的取值范围是[-$\frac{3}{2}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x,y满足约束条件$\left\{\begin{array}{l}y-x≤0\\ x+2y≤4\\ x-2y≤2\end{array}\right.$,则z=x-3y的最大值为(  )
A.4B.$\frac{3}{2}$C.$-\frac{8}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=aex-x-2a有两个零点,则实数a的取值范围是(  )
A.$({-∞,\frac{1}{e}})$B.$({0,\frac{1}{e}})$C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.若$\frac{1}{a}>\frac{1}{b}$,则a<b
B.若命题$P:?x∈({0,π}),x+\frac{1}{sinx}≤2$,则?P为真命题
C.已知命题p,q,“p为真命题”是“p∧q为真命题”的充要条件
D.若f(x)为R上的偶函数,则$\int_{-1}^1{f(x)dx}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.南北朝时期的数学家祖冲之,利用“割圆术”得出圆周率π的值在3.1415926与3.1415927之间,成为世界上第一把圆周率的值精确到7位小数的人,他的这项伟大成就比外国数学家得出这样精确数值的时间,至少要早一千年,创造了当时世界上的最高水平.我们用概率模型方法估算圆周率,向正方形及其内切圆随机投掷豆子,在正方形中的80颗豆子中,落在圆内的有64颗,则估算圆周率的值为(  )
A.3.1B.3.14C.3.15D.3.2

查看答案和解析>>

同步练习册答案