精英家教网 > 高中数学 > 题目详情
7.已知数列{an}为等比数列,且a1a13+2a72=5π,则cos(a2a12)的值为(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 利用等比数列通项公式求出${a}_{2}{a}_{12}={{a}_{7}}^{2}$=$\frac{5π}{3}$,由此能求出cos(a2a12)的值.

解答 解:∵数列{an}为等比数列,且a1a13+2a72=5π,
∴a1a13+2a72=3a72=5π,∴${{a}_{7}}^{2}$=$\frac{5π}{3}$,
${a}_{2}{a}_{12}={{a}_{7}}^{2}$=$\frac{5π}{3}$,
∴cos(a2a12)=cos$\frac{5π}{3}$=cos(2$π-\frac{π}{3}$)=cos$\frac{π}{3}$=$\frac{1}{2}$.
故选:D.

点评 本题考查等比数列的通项公式、余弦函数、诱导公式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知Ω1是集合{(x,y)|x2+y2≤1}所表示的区域,Ω2是集合{(x,y)|y≤|x|}所表示的区域,向区域Ω1内随机的投一个点,则该点落在区域Ω2内的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如果一条信息有n(n>1,n∈N)种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为p1,p2,…,pn,则称H=f(p1)+f(p2)+…f(pn)(其中f(x)=-xlogax,x∈(0,1))为该条信息的信息熵.已知$f(\frac{1}{2})=\frac{1}{2}$.
(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;
(2)某次比赛共有n位选手(分别记为A1,A2,…,An)参加,若当k=1,2,…,n-1时,选手Ak获得冠军的概率为2-k,求“谁获得冠军”的信息熵H关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正方体ABCD-A1B1C1D1的棱和六个面的对角线共24条,其中与体对角线AC1垂直的有6条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,D,E分别为BC,AB的中点,F为AD的中点,若$\overrightarrow{AB}•\overrightarrow{AC}=-1$,AB=2AC=2,则$\overrightarrow{CE}•\overrightarrow{AF}$的值为(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设(x2-3x+2)5=a0+a1x+a2x2+…+a10x10,则a1等于-240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若a>0,b>0,4a+b=ab.
(Ⅰ)求a+b的最小值;
(Ⅱ)当a+b取得最小值时,a,b的值满足不等式|x-a|+|x-b|≥t2-2t对任意的x∈R恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD,PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N分别为PD,PB,CD的中点.
(1)求证:平面MBE⊥平面PAC;
(2)求三棱锥B-AME的体积.

查看答案和解析>>

同步练习册答案