精英家教网 > 高中数学 > 题目详情
9.若集合A={0,1,2},B={x|x2<3},则A∩B=(  )
A.B.{-1,0,1}C.{0,1,2}D.{0,1}

分析 求解一元二次不等式化简B,然后直接利用交集运算得答案.

解答 解:∵A={0,1,2},B={x|x2<3}={x|$-\sqrt{3}<x<\sqrt{3}$},
∴A∩B={0,1,2}∩{x|$-\sqrt{3}<x<\sqrt{3}$}={0,1},
故选:D.

点评 本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设△ABC的三个内角为A、B、C,且tanA,tanB,tanC,2tanB成等差数列,则cos(B-A)=(  )
A.-$\frac{3\sqrt{10}}{10}$B.-$\frac{\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知F是双曲线$\frac{{x_{\;}^2}}{{a_{\;}^2}}-\frac{{y_{\;}^2}}{{b_{\;}^2}}$=1(a>0,b>0)的左焦点,过F作倾斜角为60°的直线l,直线l与双曲线交于点A与y轴交于点B且$\overrightarrow{FA}=\frac{1}{3}\overrightarrow{FB}$,则该双曲线的离心率等于(  )
A.$\sqrt{5}+1$B.$\frac{{\sqrt{10}+\sqrt{2}}}{2}$C.$\sqrt{5}+1$D.$\frac{\sqrt{7}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}中,a1=3,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,则其通项公式为an=$\frac{3}{6n-5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“a>b”是“3a>3b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线x2-2y2=2的焦点坐标是(±$\sqrt{3}$,0),离心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图记录了甲、乙两名同学其中10次数学成绩.
(1)求甲同学成绩的中位数和乙同学成绩的众数;
(2)分别从甲乙两同学这10次数学成绩位于区间[110,130)的成绩中各抽取一次,求抽取的分数恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,
PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P-AC-E的余弦值为$\frac{{\sqrt{6}}}{3}$,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=f(x)在区间(0,1)上有f′(x)>0,在区间(1,2)上有f′(x)<0,则有(  )
A.f(x)区间(0,1)上单调递减,在区间(1,2)上单调递增
B.f(x)区间(0,1)上单调递减,在区间(1,2)上单调递减
C.f(x)区间(0,1)上单调递增,在区间(1,2)上单调递增
D.f(x)区间(0,1)上单调递增,在区间(1,2)上单调递减

查看答案和解析>>

同步练习册答案