精英家教网 > 高中数学 > 题目详情
1.在△ABC中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=3,$\overrightarrow{AB}$•$\overrightarrow{BC}$=1,则|$\overrightarrow{BC}$|=$\sqrt{3}$.

分析 将$\overrightarrow{BC}$换上$\overrightarrow{AC}-\overrightarrow{AB}$,然后进行数量积的运算即可求出cos∠BAC,这样在△ABC中,利用余弦定理即可求出$|\overrightarrow{BC}|$.

解答 解:如图,
$\overrightarrow{AB}•\overrightarrow{BC}=\overrightarrow{AB}•(\overrightarrow{AC}-\overrightarrow{AB})$=$\overrightarrow{AB}•\overrightarrow{AC}-{\overrightarrow{AB}}^{2}=\overrightarrow{AB}•\overrightarrow{AC}-4=1$;
∴$\overrightarrow{AB}•\overrightarrow{AC}=6cos∠BAC=5$;
∴$cos∠BAC=\frac{5}{6}$;
∴在△ABC中由余弦定理得:$|\overrightarrow{BC}{|}^{2}=|\overrightarrow{AB}{|}^{2}+|\overrightarrow{AC}{|}^{2}-2|\overrightarrow{AB}||\overrightarrow{AC}|cos∠BAC=4+9-12×\frac{5}{6}=3$;
∴$|\overrightarrow{BC}|=\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 考查向量减法的几何意义,数量积的运算,数量积的计算公式,以及余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.$\frac{{C}_{n}^{0}{+C}_{n}^{1}{+C}_{n}^{2}+…{+C}_{n}^{n}}{{C}_{n+1}^{0}{+C}_{n+1}^{1}{+C}_{n+1}^{2}+…{+C}_{n+1}^{n+1}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)是定义在R上的函数,对x∈R都有f(-x)=f(x),周期为4,当x∈[-2,0]时,f(x)=($\frac{1}{3}$)x-6,若在区间(-2,6]内关于x的f(x)-loga(x+2)=0(a>1)恰好有3个不同的实数根,则a的取值范围是(  )
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线y=k(x+2)与y=$\sqrt{{x}^{2}+1}$有两个交点,则k的取值范围是($\frac{\sqrt{5}}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}{bn}满足a1=1,a2=x(x>0),bn=an•an+1,且{bn}是公比为q(q>0)的等比数列,设cn=a2n-1+a2n(n∈N*).
(1)求{cn}的通项公式;
(2)设dn=$\frac{lg{c}_{n+1}}{lg{c}_{n}}$,x=219.2-1,q=$\frac{1}{2}$,求数列{dn}的最大项和最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}前n项和为Sn,且$\frac{{S}_{5}}{5}$-$\frac{{S}_{2}}{2}$=3,则数列{an}的公差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.命题“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B.命题“函数$y=sin(x-\frac{3π}{2})$与函数y=cosx的图象相同”是真命题
C.命题:“设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=0.6826”的逆否命题是真命题
D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若(1+ex)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),则-$\frac{{a}_{1}}{e}+\frac{{a}_{2}}{{e}^{2}}-\frac{{a}_{3}}{{e}^{3}}$+…+$\frac{{a}_{2014}}{{e}^{2014}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某学生参加3门课程的考试.假设该学生第一门、第二门及第三门课程取得合格水平的概率依次为$\frac{4}{5}$,$\frac{3}{5}$,$\frac{2}{5}$,且不同课程是否取得合格水平相互独立.则该生只取得一门课程合格的概率为$\frac{37}{125}$.

查看答案和解析>>

同步练习册答案