分析 (Ⅰ)利用当M是AB的中点时,AB⊥平面PCM,证明AB⊥PM,AB⊥CM,即可证明.
(Ⅱ)过点M作MN⊥PC交PC于点N,点M与B到平面PMC的距离相等,即可求直线PB与平面PCD的正弦值.
解答
解:(Ⅰ)当M是AB的中点时,AB⊥平面PCM…(1分)
∵AP=PB,∴AB⊥PM
又△ACB中,AB=BC,∠ABC=60°,∴△ABC是正三角形,∴AB⊥CM
又 PM∩CM=M,∴AB⊥平面PCM…(4分)
(Ⅱ) 过点M作MN⊥PC交PC于点N,
由AB⊥平面PCM,AB∥CD得,CD⊥平面PCM
又CD?平面PCD,∴平面PCD⊥平面PCM
又MN?平面PCD,∴MN⊥平面PCD…(6分)
由已知可得$MP=1,MC=\sqrt{3}$,在Rt△PCM中,由面积公式得PM=$\frac{\sqrt{3}}{2}$,…(8分)
又AB∥CD,AB?平面PCM,∴AB∥平面PCM
即点M与B到平面PMC的距离相等,即为$\frac{{\sqrt{3}}}{2}$,…(10分)
又PB=3,∴PB与平面PCD所成角的正弦值为$\frac{{\sqrt{6}}}{4}$,…(12分)
点评 本题考查线面垂直,考查线面角,考查学生分析解决问题的能力,正确运用线面垂直的判定定理是关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{41}$$-\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{21}$$-\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,e) | D. | (e,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (0,+∞) | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,4) | B. | (4,9) | C. | (-1,4) | D. | (-1,9) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com