精英家教网 > 高中数学 > 题目详情
5.某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.
(Ⅰ)某校高二年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高二学生中抽取了90名学生的综合素质评价结果,其各个等级的频数统计如表:
等级优秀合格  不合格
男生(人)30x8
女生(人)306y
根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?
男生女生总计
优秀
非优秀
总计
(Ⅱ)以(Ⅰ)中抽取的90名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高二学生中随机抽取4人.
(i)求所选4人中恰有3人综合素质评价为“优秀”的概率;
(ii)记X表示这4人中综合素质评价等级为“优秀”的人数,求X的数学期望.
附:参考数据与公式
(1)临界值表:
0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(2)参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (Ⅰ)先求出从高一年级男生中抽出人数及x,y,作出2×2列联表,求出K2=1.125<2.706,从而得到没有90%的把握认为“综合素质评价测评结果为优秀与性别有关”.
(Ⅱ)(i)由(Ⅰ)知等级为“优秀”的学生的频率为 $\frac{2}{3}$,从该市高二学生中随机抽取一名学生,该生为“优秀”的概率为$\frac{2}{3}$.由此能求出所选4名学生中恰有3人综合素质评价为‘优秀’学生的概率.
(ii)X表示这4个人中综合速度评价等级为“优秀”的个数,由题意,随机变量X~B(4,$\frac{2}{3}$),由此能求出X的数学期望.

解答 解:(Ⅰ)设从高二年级男生中抽出m人,则$\frac{m}{500}=\frac{90}{500+400}$,
解得m=50.
∴x=50-38=12,y=40-36=4.
∴2×2列联表为:

男生女生总计
优秀303060
非优秀201030
总计504090
∴K2=$\frac{90×(30×10-20×30)^{2}}{50×40×60×30}$=2.25<2.706,
∴没有90%的把握认为“综合素质评价测评结果为优秀与性别有关”.
(Ⅱ)(i)由(Ⅰ)知等级为“优秀”的学生的频率为$\frac{2}{3}$,
∴从该市高二学生中随机抽取一名学生,该生为“优秀”的概率为 $\frac{2}{3}$.
记“所选4名学生中恰有3人综合素质评价为‘优秀’学生”为事件A,
则事件A发生的概率为:P(A)=${C}_{4}^{3}×(\frac{2}{3})^{3}×\frac{1}{3}$=$\frac{32}{81}$.
(ii)X表示这4个人中综合速度评价等级为“优秀”的个数,
由题意,随机变量X~B(4,$\frac{2}{3}$),
∴X的数学期望E(X)=4×$\frac{2}{3}$=$\frac{8}{3}$.

点评 本题考查抽样方法、独立性检验、独立重复试验的概率,考查二项分布及其期望,考查学生读取统计表,利用统计量进行决策的能力和意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知某几何体的三视图如图所示,则这个几何体的体积为$\frac{8}{3}$,表面积为6+4$\sqrt{2}$+2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x+1)lnx,g(x)=a(x-1)(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;
(Ⅲ)求证:ln2•ln3…lnn>$\frac{{2}^{n}}{n(n+1)}$(n≥2,n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若P,S分别变为:p:(x-m)2>3(x-m),s:x2+3x-4<0,若x∈p是x∈s的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校高二年段共有10个班级,现从外地转入4名学生,要安排到该年段的两个班级且每班安排2名,则不同的安排方法共有(  )
A.540种B.270种C.180种D.90种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2015)+f(2016)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-$\frac{a}{2}$x2+(a-1)x+lnx.
(Ⅰ)若a>-1,求函数f(x)的单调区间;
(Ⅱ)若g(x)=$\frac{a}{2}$x2+(1-2a)x+f(x)有且只有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.同时抛两枚硬币,事件“至少有一个正面向上”的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

同步练习册答案