精英家教网 > 高中数学 > 题目详情
6.已知圆x2+y2=17在点(1,4)处的切线与幂函数f(x)的图象在点A(1,f(1))处的切线垂直,且不等式$\frac{f(x)}{x}$>ax2+x在(1,2)上能成立,则实数a的取值范围为(  )
A.[0,+∞)B.($\frac{35}{6}$,+∞)C.(-∞,0]D.(-∞,$\frac{3}{2}$)

分析 设出幂函数f(x),求出导数,由f′(1)=4,求得f(x),则不等式$\frac{f(x)}{x}$>ax2+x在(1,2)上能成立,即为a<x-$\frac{1}{x}$在(1,2)上恒成立,求得右边函数的导数,判断单调性,求出值域,即可得到a的范围.

解答 解:设幂函数f(x)=xn,则f′(x)=nxn-1
∵圆x2+y2=17在点(1,4)处的切线与幂函数f(x)的图象在点A(1,f(1))处的切线垂直,
∴幂函数f(x)的图象在点A(1,f(1))处的切线斜率为4,
则有n=4,
即有f(x)=x4
∵不等式$\frac{f(x)}{x}$>ax2+x在(1,2)上能成立,
∴不等式x3>ax2+x在(1,2)上恒成立,
即为a<x-$\frac{1}{x}$在(1,2)上恒成立,
由于在(1,2)上,x-$\frac{1}{x}$的导数1+$\frac{1}{{x}^{2}}$>0,即有(1,2)为增区间,
即有0<x-$\frac{1}{x}$<$\frac{3}{2}$,
则有a≤0.
故选:C.

点评 本题考查导数的几何意义:曲线在该点处的切线的斜率,考查不等式恒成立思想转化为求最值或值域问题,考查函数的单调性和应用,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow{b}$=(cosx,-1).
(1)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求cos2x的值;
(2)设函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$,求当0≤x≤$\frac{π}{2}$时,函数f(x)的最大值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知y=f(x)+2x2是奇函数,且f(1)=2,若g(x)=f(x)+2x,则g(-1)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,则双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1的渐近线方程y=±$\frac{2\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a?α,b?α,a∩b=A,P∈a,PQ∥b.求证:PQ?α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.利用公式计算:$\frac{{A}_{n-1}^{m-1}•{A}_{n-m}^{n-m}}{{A}_{n-1}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=$\frac{ax}{ax+1}$,a≠0,a为常数,方程f(x)=x有唯一实数解
(1)求f(x)
(2)x1=2,xn+1=f(xn),n∈N*,求证:数列{$\frac{1}{{x}_{n}}$}为等差数列,并求xn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,$\overrightarrow{AB}$=(3,1),$\overrightarrow{AD}$=(2,-2),则$\overrightarrow{AC}•\overrightarrow{BD}$(  )
A.2B.-2C.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F是双曲线C:$\frac{x^2}{16}-\frac{y^2}{9}$=1的右焦点,P是C的左支上一点,A(0,$\sqrt{11}$).则△APF的周长的最小值为20.

查看答案和解析>>

同步练习册答案