精英家教网 > 高中数学 > 题目详情
2.已知命题p:方程$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{1-m}$=1表示焦点在y轴上的椭圆;命题q:双曲线$\frac{y^2}{5}-\frac{x^2}{m}$=1的离心率$e∈(1,\sqrt{3})$,若p、q有且只有一个为真,求实数m的取值范围.

分析 利用椭圆与双曲线的标准方程及其性质分别可得m的取值范围,由于p、q有且只有一个为真,可知:p与q必然一真一假,即可得出.

解答 解:将方程$\frac{x^2}{2m}-\frac{y^2}{m-1}=1$改写为$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$,
只有当1-m>2m>0,即$0<m<\frac{1}{3}$时,方程表示的曲线是焦点在y轴上的椭圆,所以命题p等价于$0<m<\frac{1}{3}$;
因为双曲线$\frac{y^2}{5}-\frac{x^2}{m}=1$的离心率$e∈(1,\sqrt{3})$,
所以m>0,且1$<\frac{5+m}{5}<3$,解得0<m<10,
所以命题q等价于0<m<10; 
若p真q假,则m∈∅;
若p假q真,则$\frac{1}{3}≤m<10$
综上:m的取值范围为$\frac{1}{3}≤m<10$.

点评 本题考查了椭圆与双曲线的标准方程及其性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{b}$为单位向量,向量$\overrightarrow{a}$=(1,1),且|$\overrightarrow{a}$-$\sqrt{2}$$\overrightarrow{b}$|=$\sqrt{6}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a,b均为正数.
(1)若a+b=1,求$\frac{1}{a}$+$\frac{4}{b}$的最小值;
(2)证明:(1+a+b2)(1+a2+b)≥9ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,设内角A,B,C的对边分别为a,b,c,sin($\frac{π}{3}$-C)+cos(C-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$.
(1)求角C;
(2)若c=2$\sqrt{3}$,点O满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,求$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.y=2x+1在(1,2)内的平均变化率为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式$\frac{x-2}{3-x}$≤1的解集为{x|x>3或x≤$\frac{5}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数y=f(x)在区间(a,b)上的导函数f′(x),f′(x)在区间(a,b)上的导函数为f″(x).若区间(a,b)上f″(x)>0恒成立,则称函数f(x)在区间(a,b)上为“凹函数”;已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(2,3)上为“凹函数”,则实数m的取值范围是(  )
A.(-∞,1]B.[1,$\frac{23}{9}$]C.(-∞,-3]D.(-∞,$\frac{23}{9}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知在△ABC中,AB=3,AC=7,点P在AC上,且PB=PC,则$\overrightarrow{AP}$•$\overrightarrow{BC}$=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.比较下列各组数的大小
(1)0.80.5与0.90.4
(2)40.9,80.48,($\frac{1}{2}$)-1.5

查看答案和解析>>

同步练习册答案