分析 (1)由已知展开两角差的正弦和余弦,结合角范围即可求得C;
(2)由|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,可知O为△ABC的外心,把$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)转化为$\frac{1}{2}({a}^{2}+{b}^{2})$,再由三角形中的余弦定理结合基本不等式求得$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)的取值范围.
解答 解:(1)在△ABC中,由sin($\frac{π}{3}$-C)+cos(C-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,
得$sin\frac{π}{3}cosC-cos\frac{π}{3}sinC+cosCcos\frac{π}{6}+sinCsin\frac{π}{6}=\frac{\sqrt{3}}{2}$,
即$\frac{\sqrt{3}}{2}cosC-\frac{1}{2}sinC+\frac{\sqrt{3}}{2}cosC+\frac{1}{2}sinC=\frac{\sqrt{3}}{2}$,
∴cosC=$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$;
(2)$c=2\sqrt{3}$,
由|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,可知O为△ABC的外心,
∴求$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)=$\overrightarrow{CO}•\overrightarrow{CA}+\overrightarrow{CO}•\overrightarrow{CB}$=$\frac{1}{2}(|\overrightarrow{CA}{|}^{2}+|\overrightarrow{CB}{|}^{2})$.
由${c}^{2}={a}^{2}+{b}^{2}-2ab•cos\frac{π}{3}={a}^{2}+{b}^{2}-ab$,
可得$\frac{{a}^{2}+{b}^{2}}{2}≤12$,
∴$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)=$\frac{{a}^{2}+{b}^{2}}{2}≤12$.
∴$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)的取值范围是(0,12].
点评 本题考查平面向量的数量积运算,考查了三角形的解法,体现了数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{1{0}^{5}}$ | B. | $\frac{1}{1{0}^{4}}$ | C. | $\frac{1}{1{0}^{2}}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | ±$\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a+b+$\frac{1}{\sqrt{ab}}$≥2$\sqrt{2}$ | B. | (a+b)($\frac{1}{a}$+$\frac{1}{b}$)≥4 | C. | $\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$≥2$\sqrt{ab}$ | D. | $\frac{2ab}{a+b}$>$\sqrt{ab}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com