精英家教网 > 高中数学 > 题目详情
13.集合M={x|lg(x+4)<1},N={x|x2+6x-16≤0},则M∩N等于(  )
A.[-8,2]B.[-8,6)C.(-4,8]D.(-4,2]

分析 根据题意,解对数不等式lg(x+4)<1可得集合M,解x2+6x-16≤0可得集合N,由交集的定义计算可得答案.

解答 解:根据题意,lg(x+4)<1⇒lg(x+4)<lg10⇒0<x+4<10⇒-4<x<6,
即集合M={x|lg(x+4)<1}=(-4,6);
x2+6x-16≤0⇒-8≤x≤2,即N={x|x2+6x-16≤0}=[-8,2];
M∩N=(-4,2];
故选:D.

点评 本题考查集合交集的计算,关键是掌握集合交集的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinAsin(C+$\frac{π}{6}$)=sinB+sinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=|x-3|-4(1≤x≤4)的值域是[-4,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{6}$x2+ax+sinx(x∈(0,$\frac{π}{2}$)),在定义域内单调递增,则a的取值范围是(  )
A.[-$\frac{π}{6}$,+∞)B.(-∞,-$\frac{π}{2}$]C.(-∞,0]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R满足f(x)+f′(x)>0,则下列结论正确的是(  )
A.2f(ln2)>3f(ln3)B.2f(ln2)<3f(ln3)C.2f(ln2)≥3f(ln3)D.2f(ln2)≤3f(ln3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ln(x+1)-ax,g(x)=1-ex(a为常数,其中e是自然对数的底数)
(Ⅰ)讨论函数f(x)的单调性
(Ⅱ)证明:当x>0且a≤2时,函数f(x)的图象恒在g(x)的图象上方.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={x|x>1},B={x|x2<2x},则A∩B=(1,2)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知一袋有2个白球和4个黑球.
(1)采用不放回地从袋中摸球(每次摸一球),4次摸球,求恰好摸到2个黑球的概率;
(2)采用有放回从袋中摸球(每次摸一球),4次摸球,令 X 表示摸到黑球次数,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x|0<x≤5,且x∈N*},在集合A中任取2个不同的数,则取出的2个数之差的绝对值不小于2的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案