分析 (Ⅰ)求出函数f(x)的导数f′(x),利用导数判断f(x)的单调性,并求出单调区间;
(Ⅱ)构造函数h(x)=f(x)-g(x)=ln(x+1)-ax+ex-1,利用导数证明h(x)在(0,+∞)上为增函数,且求得h(0)=0得答案.
解答 (Ⅰ)解:∵函数f(x)=ln(x+1)-ax,x>-1;
∴f′(x)=$\frac{1}{x+1}$-a,
当a≤0时,f′(x)=$\frac{1}{x+1}$-a>0,
f(x)在定义域(-1,+∞)上是单调增函数;
当a>0时,令f′(x)=0,解得x=$\frac{1}{a}$-1,
∴x∈(-1,$\frac{1}{a}$-1)时,f′(x)>0,f(x)是单调增函数,
x∈($\frac{1}{a}$-1,+∞)时,f′(x)<0,f(x)是单调减函数.
综上,a≤0时,f(x)的单调增区间是(-1,+∞),
a>0时,f(x)的单调增区间是(-1,$\frac{1}{a}$-1),单调减区间是($\frac{1}{a}$-1,+∞);
(Ⅱ)证明:令h(x)=f(x)-g(x)=ln(x+1)-ax+ex-1,
则h′(x)=$\frac{1}{x+1}+{e}^{x}-a$,
当x>0且a≤2时,ex>x+1,
∴h′(x)=$\frac{1}{x+1}+{e}^{x}-a$>$\frac{1}{x+1}+x+1-a>2-a≥0$.
故h(x)在(0,+∞)上为增函数,
即h(x)>h(0)=0.
∴f(x)-g(x)>0,f(x)>g(x).
故当x>0且a≤2时,函数f(x)的图象恒在g(x)的图象上方.
点评 本题考查函数导数的综合应用问题,考查数学转化思想方法与分类讨论思想思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (1,$\sqrt{2}$) | B. | ($\sqrt{2}$,2) | C. | (2,2) | D. | (4,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-8,2] | B. | [-8,6) | C. | (-4,8] | D. | (-4,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男性 | 女性 | 合计 | |
| 20~35岁 | a | 40 | 100 |
| 36~50岁 | 40 | d | 90 |
| 合计 | 100 | 90 | 190 |
| P(K2>k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com